Skip to main content
Log in

The sampling theory of neutral alleles and an urn model in population genetics

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The behaviour of a Pólya-like urn which generates Ewens' sampling formula in population genetics is investigated. Connections are made with work of Watterson and Kingman and to the Poisson-Dirichlet distribution. The order in which novel types occur in the urn is shown to parallel the age distribution of the infinitely many alleles diffusion model and consequences of this property are explored. Finally the urn process is related to Kingman's coalescent with mutation to provide a rigorous basis for this parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackwell, D., MacQueen, J. B.: Ferguson distributions via Pólya urn schemes. Ann. Statist. 1, 353–355 (1973)

    Google Scholar 

  • Connor, R. J., Mosimann, J. E.: Concepts of independence for proportions with a generalization of the Dirichlet distribution. J. Am. Statist. Assoc. 64, 194–206 (1969)

    Google Scholar 

  • Donnelly, P., Tavaré, S.: The ages of alleles and a coalescent. Adv. Appl. Probab. 18, 1–19 (1986)

    Google Scholar 

  • Engen, S.: A note on the geometric series as a species frequency model. Biometrica 62, 694–699 (1975)

    Google Scholar 

  • Ethier, S. N., Griffiths, R. C.: The infinitely-many-sites model as a measure-valued diffusion. Ann. Probab., to appear (1987)

  • Ethier, S. N., Kurtz, T. G.: The infintely-many-neutral-alleles diffusion model. Adv. Appl. Probab. 13, 429–452 (1981)

    Google Scholar 

  • Ethier, S. N., Kurtz, T. G.: Markov processes; characterization and convergence. New York: Wiley 1986

    Google Scholar 

  • Ewens, W. J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972)

    Google Scholar 

  • Ewens, W. J.: Testing for increased mutation rate for neutral alleles. Theor. Popul. Biol. 4, 251–258 (1973)

    Google Scholar 

  • Ewens, W. J.: Mathematical population genetics. New York Heidelberg Berlin: Springer 1979

    Google Scholar 

  • Fuerst, P. A., Chakraborty, R., Nei, M.: Statistical studies on protein polymorphism in natural populations. I. Distribution of single locus heterozygosity. Genetics 86, 455–483 (1977)

    Google Scholar 

  • Good, I. J.: The estimation of probabilities. Cambridge: MIT Press 1965

    Google Scholar 

  • Griffiths, R. C.: Lines of descent in the diffusion approximation of neutral Wright-Fisher models. Theor. Popul. Biol. 17, 37–50 (1980)

    Google Scholar 

  • Griffiths, R. C., Li, W.-H.: Simulating allele frequencies in a population and the genetic differentiation of populations under mutation pressure. Theor. Popul. Biol. 23, 19–33 (1983)

    Google Scholar 

  • Hill, B. M.: Posterior moments of the number of species in a finite population and the posterior probability of finding a new species. J. Am. Statist. Assoc. 74, 668–673 (1979)

    Google Scholar 

  • Hoppe, F. M.: Pólya-like urns and the Ewens sampling formula. J. Math. Biol. 20, 91–99 (1984)

    Google Scholar 

  • Hoppe, F. M.: Size-biased filtering of Poisson-Dirichlet samples with an application to partition structures in genetics. J. Appl. Probab. 23, 1008–1012 (1986)

    Google Scholar 

  • Karlin, S., McGregor, J.: The number of mutant forms maintained in a population. Proc. Fifth. Berk. Symp. Math. Stat. and Prob. II, 415–438 (1967)

    Google Scholar 

  • Karlin, S., McGregor, J.: Addendum to a paper of W. Ewens. Theor. Popul. Biol. 3, 113–116 (1972)

    Google Scholar 

  • Kelly, F. P.: Exact results for the Moran neutral allele model. Adv. Appl. Probab. 9, 197–201 (1977)

    Google Scholar 

  • Kingman, J. F. C.: Random discrete distributions. J. Roy. Statist. Soc. B. 37, 1–22 (1975)

    Google Scholar 

  • Kingman, J. F. C.: The population structure associated with Ewens' sampling formula. Theor. Popul Biol. 11, 274–283 (1977)

    Google Scholar 

  • Kingman, J. F. C.: Random partitions in population genetics. Proc. R. Soc. Lond. A. 361, 1–20 (1978)

    Google Scholar 

  • Kingman, J. F. C.: The mathematics of genetic diversity. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 34 Philadelphia, PA S.I.A.M. 1980

    Google Scholar 

  • Kingman, J. F. C.: On the genealogy of large populations. J. Appl. Prob. 19A, 27–43 (1982a)

    Google Scholar 

  • Kingman, J. F. C.: The coalescent. Stoch. Proc. Applic. 13, 235–248 (1982b)

    Google Scholar 

  • Kingman, J. F. C.: Exchangeability and the evolution of large populations. In: Koch, G., Spizzichino, F. (eds.) Exchangeability in probability and statistics. Amsterdam: North Holland 1982c

    Google Scholar 

  • McCloskey, J.W.: A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State University (1965)

  • Patil, G. P., Taillie, C.: Diversity as a concept and its implications for random communities. Bull. Int. Stat. Inst. XLVII, 497–515 (1977)

    Google Scholar 

  • Saunders, I. W., Tavaré, S., Watterson, G. A.: On the genealogy of nested subsamples from a haploid population. Adv. Appl. Prob. 16, 471–491 (1984)

    Google Scholar 

  • Tavaré, S.: Line-of-descent and genealogical processes, and their applications in population genetics models. Theor. Popul. Biol. 26, 119–164 (1984)

    Google Scholar 

  • Trajstman, A. C.: On a conjecture of G. A. Watterson. Adv. Appl. Prob. 6, 489–493 (1974)

    Google Scholar 

  • Watterson, G. A.: Models for logarithmic species abundance distributions. Theor. Popul. Biol. 6, 217–250 (1974)

    Google Scholar 

  • Watterson, G. A.: The sampling theory of selectively neutral alleles. Adv. Appl. Prob. 6, 463–488 (1974)

    Google Scholar 

  • Watterson, G. A.: The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probab. 13, 639–651 (1976)

    Google Scholar 

  • Watterson, G. A.: Reversibility and the age of an allele. I. Moran's infinitely-many neutral alleles model. Theor. Popul. Biol. 10, 239–253 (1976)

    Google Scholar 

  • Watterson, G. A.: Lines of descent and the coalescent. Theor. Popul. Biol. 26, 72–92

  • Watterson, G. A.: Estimating the divergence time of two species, to appear (1985)

  • Watterson, G. A., Guess, H. A.: Is the most frequent allele the oldest? Theor. Popul. Biol. 11, 141–160 (1977)

    Google Scholar 

  • Wilks, S. S.: Mathematical statistics. New York: Wiley 1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by the Sloan Foundation under Grant 85-6-14 and by the National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoppe, F.M. The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biology 25, 123–159 (1987). https://doi.org/10.1007/BF00276386

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276386

Key words

Navigation