Skip to main content
Log in

Mathematische simulation des respirationssystems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Mathematical Simulation of the Respiratory System. The respiratory system is described as a feedback control system. The controller consists of the peripheral chemoreceptors and the central chemosensitive structures, the respiratory centre in the medulla oblongata and the thorax-lung pump which they drive. The controlled system is comprised of three compartments (lung, brain and the remaining tissue) connected by the blood circulation. The controlled values are arterial pH and arterial O2 partial pressure and cerebral extracellular pH. Earlier models have been improved by: (1) the dead space description, (2) the thermodynamic formulation of the CO2 dissociation equation and the simple but accurate O2 dissociation equation of the blood, (3) the alteration of the CO2 dissociation equation for the brain and the remaining tissue to accommodate recent results, (4) the application of the one-receptor-theory of central chemosensitivity, (5) the pH dependence of brain circulation, (6) the bicarbonate exchange between blood and extracellular fluid of the brain and (7) the introduction of variable circulation times. Respiratory and metabolic disturbances of the respiratory system are analyzed.

The mathematical formulation of the respiratory system is a differential difference equation system.

In the steady state the experimental results are reproduced fairly well. A slight discrepancy is found in the simulation of metabolic acidosis. Apparently we have assumed the sensitivity of the peripheral chemoreceptors to be too large so that the respiratory response is not correctly predicted.

In the numerical solution there is an overshoot in the on-transient and a damped oscillation in the off-transient of the alveolar CO2 partial pressure during respiratory acidosis. We have varied the parameters to make deviations small. The best agreement seems to result, if the central treshold is near the normal extracellular pH of the brain. A further deviation from experimental findings is that the cerebral CO2 and H+ concentration, the blood circulation of the brain, the alveolar O2 partial tension and the ventilation show a slight oscillation in the off-transient. Except for these discrepancies the experimental results, especially the stability of the extracellular pH of the brain, are reproduced fairly well. During hypoxia there are deviations form the experimental results if the central residual activity is constant and the central threshold deviates from the normal extracellular pH of the brain. But if the central residual activity is pH dependent and if the central threshold is equal to the normal extracellular pH of the brain, then the time course of VE and the other variables agree fairly well with experimental results. There is also a good correspondence between the theoretical and experimental data during hyperoxia. During metabolic acidosis the time constant of the bicarbonate exchange between blood and extracellular fluid of the brain is important. If a time constant of one minute is assumed, then the predicted and the experimental results correspond sufficiently well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ahmad, H. R., Berndt, J., Loeschcke, H. H.: Bicarbonate exchange between blood, brain extracellular fluid and brain cells at maintained Pco2. Stuttgart: G. Thieme, im Druck.

  • Albers, C., Ludwig, O., Usinger, W., Spaich, P.: Indirect determination of mean whole body and intracellular CO2 and buffer capacity. Resp. Physiol. 11, 197–210 (1971).

    Google Scholar 

  • Bartels, H., Beer, R., Koepchen, H.-P., Wenner, J., Witt, I.: Messung der alveolär-arteriellen O2-Druckdifferenz mit verschiedenen Methoden am Menschen bei Ruhe und Arbeit. Pflüg. Arch. 261, 133–151 (1955).

    Google Scholar 

  • Bernards, J. A., Dejours, P., Lacaisse, A.: Ventilatory effects in man of breathing successively CO2-free, CO2-enriched, and CO2-free gas mixture with low, normal or high oxygen con centration. Resp. Physiol. 1, 390–397 (1966).

    Google Scholar 

  • Berndt, J., Berger, W., Berger, K., Schmidt, M.: Untersuchungen zum zentralen chemosensiblen Mechanismus der Atmung. Pflüg. Arch. 332, 146–170 (1972).

    Google Scholar 

  • Betz, E., Heuser, D.: Cerebral cortical blood flow during changes of acid-base equilibrium of the brain. J. Appl. Physiol. 23, 726–733 (1967).

    Google Scholar 

  • Betz, E.: Cerebral blood flow: Its measurement and regulation. Physiol. Rev. 52, 595–630 (1972).

    Google Scholar 

  • Carrell, D. E., Milhorn, H. T., Jr.: Dynamic respiratory and circulatory responses to hypoxia in the anesthetized dog. J. Appl. Physiol. 30, 305–315 (1971).

    Google Scholar 

  • Cherniack, N. S., Longobardo, G. S.: Oxygen and carbon dioxide gas stores of the body. Physiol. Reviews 50, 196–243 (1970).

    Google Scholar 

  • Cherniack, N. S., Longobardo, G. S., Palermo, F. P., Heymann, M.: Dynamics of oxygen stores changes following on alteration in ventilation. J. Appl. Physiol. 24 (6), 809–816 (1968).

    Google Scholar 

  • Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., Wollman, H.: Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol. 23, 183–189 (1967).

    Google Scholar 

  • Comroe, J. H., Forster, R. E., Du Bois, A. B., Briscoe, W. A., Carlson, E.: The lung. Chicago: Year Book Medical Publishers 1965.

    Google Scholar 

  • Cunningham, D. J. C.: The control system regulating breathing in man. Quart. Reviews Biophys. 6, 433–483 (1974).

    Google Scholar 

  • Defares, J. G., Derksen, H. E., Duyff, J. W.: Cerebral blood flow in the regulation of respiration. Acta Physiol. Pharmacol. Neerl. 9, 327–360 (1960).

    Google Scholar 

  • Edelman, N. H., Epstein, P. S., Lahiri, S., Cherniack, N. S.: Ventilatory responses to transient hypoxia and hypercapnia in man. Resp. Physiol. 17, 302–314 (1973).

    Google Scholar 

  • Fencl, V., Miller, T. B., Pappenheimer, J. R.: Studies on the respiratory response to disturbances of acid-base balance with deductions concerning the ionic compositions of cerebral interstitial fluid. Am. J. Physiol. 210, 459–472 (1966).

    Google Scholar 

  • Fencl, V., Vale, J. R., Broch, J. A.: Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans. J. Appl. Physiol. 27, 67–76 (1969).

    Google Scholar 

  • Fencl, V.: Distribution of H+ and HCO 3 in cerebral fluids. Alfred Benzon Symp. III, Ion Homeostasis of the Brain, S. 175–185. Copenhagen: Munksgaard 1971.

    Google Scholar 

  • Flumerfelt, R. W., Crandall, E. D.: Analysis of external resp. in man. Math. Biosci. 3, 205–230 (1968).

    Google Scholar 

  • Gleichmann, U., Ingvar, D. H., Lübbers, D. W., Siesjö, B. K., Thews, G.: Tissue pO2 and pCO2 of the cerebral cortex, related to blood gas tensions. Acta Physiol. Scand. 55, 127–138 (1962).

    Google Scholar 

  • Gökhan, N., Winterstein, H.: Die chemische Reaktion der Cerebrospinalflüssigkeit bei Sauerstoffmangel. Z. Physiol. Chem. 295, 71–76 (1953).

    Google Scholar 

  • Gray, J. S.: The multiple factor theory of respiratory regulation. AAF School of Aviation Med. Project Report Nr. 386 (1945).

  • Grodins, F. S., Gray, J. S., Schroeder, K. R., Norins, A. L., Jones, W. R.: Respiratory responses to CO2-inhalation. A theoretical study of a nonlinear biological regulator. J. Appl. Physiol. 7, 283–308 (1954).

    Google Scholar 

  • Grodins, F. S., James, G.: Mathematical models of respiratory regulation. An. N. Y. Acad. Sci. 109, 852–868 (1963).

    Google Scholar 

  • Grodins, F. S., Buell, J., Bart, A. J.: Mathematical Analysis and Digital Simulation of the Respiratory Control System. J. Appl. Physiol. 22 (2), 260–276 (1967).

    Google Scholar 

  • Horgan, J. D., Lange, R. L.: Analog computer studies of periodic breathing. IRE (Inst. Radio Engrs.) Trans. Bio-Med. Electron. 9, 221–228 (1962).

    Google Scholar 

  • Horgan, J. D., Lange, R. L.: Digital computer simulation of the human respiratory system. IEEE Intern. Conv. Record. II, Part 9, 149–157 (1963).

    Google Scholar 

  • Horgan, J. D., Lange, R. L.: Digital computer simulation of respiratory response to cerebrospinal fluid Pco2 in the cat. Biophys. J. 8, 935–945 (1965).

    Google Scholar 

  • James, J. M., Millar, R. A.: Purves, J. M.: Observations on the extrinsic neutral control of cerebral blood flow in the baboon. Circulation Research 25, 77–93 (1969).

    Google Scholar 

  • Kjällquist, A., Nardini, M., Siesjö, B. K.: The regulation of extra and intracellular acid-base parameters in the rat brain during hyper and hypocapnia. Acta Physiol. Scand. 76, 485–494 (1969).

    Google Scholar 

  • Kronenberg, R. S., Cain, S. M.: Effects of acetazolamide and hypoxia on cerebrospinal fluid bicarbonate. J. Appl. Physiol. 24, 17–20 (1968).

    Google Scholar 

  • Lange, R. L., Horgan, J. D., Botticelli, J. T., Tsagaris, T., Carlisle, R. P., Kuida, H.: Pulmonary to arterial circulatory transfer function: importpnce in respiratory control. J. Appl. Physiol. 21, 1281–1291 (1966).

    Google Scholar 

  • Lambertsen, C. J., Kough, R. H., Cooper, D. Y., Emmel, G. L., Loeschcke, H. H., Schmidt, C. F.: Comparison of relationship of respiratory minute volume to pCO2 and pH or arterial and internal jugular blood in normal man during hyperventilation produced by low concentration of CO2 at 1 atmosphere and by O2 at 3.0 atmosphere. J. Appl. Physiol. 5, 803–813 (1953).

    Google Scholar 

  • Lloyd, B. B.: The interactions between hypoxia and other ventilatory stimuli. Proc. inst. Symp. cardiovasc. respir. effects Hypoxia, S. 146–165. Basel-New York: Karger 1966.

    Google Scholar 

  • Loeschcke, G. C.: Spielen für die Ruheatmung des Menschen von O2-Druck abhängige Erregung der Chemorezeptoren eine Rolle? Pflüg. Arch. 260, 257–362 (1953).

    Google Scholar 

  • Loeschcke, H. H.: Über Reiz und Erregbarkeit der zentralen Atmungsregulation. Klin. Wschr. 27, 761–766 (1949).

    Google Scholar 

  • Loeschcke, H. H.: Homoiostase des arteriellen CO2-Druckes und Anpassung der Lungenventilation an den Stoffwechsel als Leistungen eines Regelsystems. Klin. Wschr. 38, 366–376 (1960).

    Google Scholar 

  • Loeschcke, H. H.: A concept of the role of intracranial chemosensitivity in respiratory control. In: Cerebrospinal fluid and the regulation of ventilation (Brooks, C. McG, Kao, F. F., Lloyd, B. B., eds.), 183–207. Oxford: Blackwell 1965.

    Google Scholar 

  • Loeschcke, H. H.: Der Säure-Basenstatus des Liquor cerebrospinalis und seine Regulation durch die Lungenventilation. Klin. Wschr. 50, 581–593 (1972).

    Google Scholar 

  • Loeschcke, H. H.: The respiratory control system: Analysis of steady state solutions for metabolic and respiratory acidosis-alkalosis and increased metabolism. Pflüg. Arch. 341, 23–42 (1973 a).

    Google Scholar 

  • Loeschcke, H. H.: Control of the acid base status of brain extracellular fluid by the ventilation. Clin. Physiol. (Tokyo) 3, 156–169 (1973 b).

    Google Scholar 

  • Loeschcke, H. H.: The apparent specificity of CO2 as a respiratory stimulus. Bull. Physio-Path. Resp. 10, 857–876(1974).

    Google Scholar 

  • Loeschcke, H. H., Gertz, K. H.: Einfluß des O2-Druckes in der Einatmungsluft auf die Atem tätigkeit des Menschen, geprüft unter Konstanthaltung des alveolaren CO2-Druckes. Pflüg. Arch. 267, 460–477 (1958).

    Google Scholar 

  • Loeschcke, H. H., Katsaros, B., Albers, C., Michel, C. C.: Über den zeitlichen Verlauf von Atemzugvolumen, Atem-Periodendauer, Atemminutenvolumen und endexspiratorischem CO2 Druck bei Einatmung von Gasgemischen mit erhöhtem CO2-Druck. Pflüg. Arch. 277, 671–683 (1963).

    Google Scholar 

  • Loeschcke, H. H., Koepchen, H.-P., Gertz, K. H.: Über den Einfluß von Wasserstoffionenkonzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflüg. Arch. 266, 565–585 (1958 a).

    Google Scholar 

  • Loeschcke, H. H., Mitchell, R. A., Katsaros, B., Perkins, J. F. Jr., König, A.: Interaction of intracranial chemosensitivity with peripheral afferents to the respiratory centers. Annals of New York Acad. Scienc. 109, 651–659 (1963 a).

    Google Scholar 

  • Loeschcke, H. H., Sugioka, K.: pH of cerebrospinal fluid in the cisterna magna and on the surface of the choroid plexus of the 4th ventricle and its effect on ventilation in experimental disturbances of acid-base balance. Transients and steady-states. Pflüg. Arch. 312, 161–188 (1969).

    Google Scholar 

  • Loeschcke, H. H., Sweel, A., Kough, R. H., Lambertsen, D. J.: The effect of morphine and of meperidine (dolantin, demerol) upon the respiratory response of normal men to low concentration of inspired carbon dioxide. J. Pharmacol. exp. Ther. 108, 376–383 (1953).

    Google Scholar 

  • Longobardo, G. S., Cherniack, N. S., Staw, I.: Transients in carbon dioxide stores. IEEE Trans. Bio.-Med. Eng. 3, 182–191 (1967).

    Google Scholar 

  • Longobardo, G. S., Cherniack, N. S., Fishman, A. P.: Cheyne-Stokes breathing produced by a model of the human respiratory system. J. Appl. Physiol. 21, 1839–1846 (1966).

    Google Scholar 

  • Lübbers, D. W.: Physiologie der Gehirndurchblutung: In: Der Hirnkreislauf. Stuttgart: G. Thieme 1972.

    Google Scholar 

  • Matthews, C. M. E., Laszlo, G., Cambell, E. J., Read, D. J. C.: A model for the distribution and transport of CO2 in the body and the ventilatory response to CO2. Resp. Physiol. 6, 45–87 (1968/69).

    Google Scholar 

  • Middendorf, T.: Mathematische Simulation des Respirationssystems. Diss., Abt. Biologie, Bochum, 1974.

    Google Scholar 

  • Middendorf, T., Loeschcke, H. H., Ewald, G.: Mathematische Analyse des Respirationssystems. Kybernetik 10, 203–219 (1972).

    Google Scholar 

  • Middendorf, T., Loeschcke, H. H.: Approximative Berechnung der Pufferbase, einer Titrationsgeraden für Proteine und der CO2-Dissoziationskurve des Gehirngewebes. Pflüg. Arch. 349, 1–8 (1974).

    Google Scholar 

  • Milhorn, H. T., Jr., Benton, R., Roos, R., Guyton, A. C.: A mathematical model of the human respiratory control system. Biophys. J. 5, 27–46 (1965).

    Google Scholar 

  • Milhorn, H. T., Jr., Brown, D. R.: Steady-state simulation of the human respiratory system. Computers and Biomedical Research 3, 604–619 (1971).

    Google Scholar 

  • Milhorn, H. T., Jr., Guyton, A. C.: An analog computer analysis of Cheyne-Stokes breathing. J. Appl. Physiol. 20, 328–333 (1965).

    Google Scholar 

  • Milhorn, H. T., Jr., Reynolds, W. J., Holloman, G. H., Jr.: Digital simulation of the ventilatory response to CO2-inhalation and CSF perfusion. Computers and Biomedical Research 5, 301–314 (1972).

    Google Scholar 

  • Mückenhoff, K.: Die Berechnung des Säure-Basen-Status des menschlichen Vollblutes mit Hilfe eines numerischen Verfahrens. Dissertation, Abt. Biologie, Bochum, 1973.

    Google Scholar 

  • Mückenhoff, K., Loeschcke, H. H., Berndt, J.: Thermodynamic approach to the acid-base balance in blood including O2 and CO2-dissociation and active-sodium transport by the erythrocyten membrane. Bull. Physio-Path. Resp. (in Vorbereitung).

  • Opitz, E.: Über akute Hypoxie. Erg. Physiol. 44, 315–424 (1941).

    Google Scholar 

  • Opitz, E., Schneider, M.: Über die Sauerstpffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Erg. Physiol. 46, 126–260 (1950).

    Google Scholar 

  • Pappenheimer, J. R., Fencl, V., Heisey, S. R., Held, D.: Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208, 436–450 (1965).

    Google Scholar 

  • Perkins, J. F., Jr.: The contribution of the peripheral respiratory chemoreceptors to pulmonary ventilation. A historical and experimental Approach. In: Arterial chemoreceptors, Torrance, R. W., pp. 335–352. Oxford-Edinburgh: Blackwell 1968.

    Google Scholar 

  • Pontén, U., Siesjö, B. K.: Gradients of CO2 tension m the brain. Acta Physiol. Scand. 67, 129–140 (1966).

    Google Scholar 

  • Purves, M. J.: The physiology of the cerebral circulation. Cambridge: University Press 1972.

  • Reivich, M.: Arterial pCO2 and cerebral hemodynamics. Am. J. Physiol. 206, 25 (1964).

    Google Scholar 

  • Reynolds, W. J., Milhorn, H. T., Jr., Holloman, G. H., Jr.: Transient ventilatory response to graded hypercapnia in man. J. Appl. Physiol. 33, 47–54 (1972).

    Google Scholar 

  • Richardson, D. W., Wasserman, A. J., Patterson, J. L., Jr.: General and regional circulatory responses to change in blood pH and carbon dioxide tension. J. Clin. Invest. 40, 31–43 (1961).

    Google Scholar 

  • Sackner, M. A., Feisal, K. A., Du Bois, A. B.: Determination of tissue volume and carbon dioxide dissociation slope of the lungs in man. J. Appl. Physiol. 19, 374–380 (1964).

    Google Scholar 

  • Scarborough, W. R., Penneys, R., Thomas, C. B., Baker, B. M., Jr., Mason, R. E.: The cardiovascular effect of induced controlled anoxemia. Circulation 4, 190–210 (1951).

    Google Scholar 

  • Severinghaus, J. W., Mitchell, R. A., Richardson, B. W., Singer, M. M.: Respiratory control at high altitude suggesting active transport regulation of CSF pH. J. Appl. Physiol. 18, 1155–1166 (1963).

    Google Scholar 

  • Trueb, T. J., Cherniack, N. S., Staw, J.: Transients on carbon dioxide stores. Biophys. J. 11, 810–834 (1971).

    Google Scholar 

  • Weyne, J., Leusen, J.: Bicarbonate, chloride and lactate in brain during acid-base alterations. Alfred Benzon Symp. III, Ion Homeostasis of the brain, pp. 352–374. Copenhagen: Munksgaard 1971.

    Google Scholar 

  • Wiemer, W., Kiwull, P.: Die Interferenz zentraler und peripherer Mechanismen bei der chemischen Steuerung der Atmung. Acta Neurovegetation 28, 289–312 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung durch die Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 114 (Bionach).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middendorf, T., Loeschcke, H.H. Mathematische simulation des respirationssystems. J. Math. Biology 3, 149–177 (1976). https://doi.org/10.1007/BF00276203

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276203

Navigation