Skip to main content
Log in

The dynamics of density dependent population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

The dynamics of density-dependent population models can be extraordinarily complex as numerous authors have displayed in numerical simulations. Here we commence a theoretical analysis of the mathematical mechanisms underlying this complexity from the viewpoint of modern dynamical systems theory. After discussing the chaotic behavior of one-dimensional difference equations we proceed to illustrate the general theory on a density-dependent Leslie model with two age classes. The pattern of bifurcations away from the equilibrium point is investigated and the existence of a “strange attractor” is demonstrated — i.e. an attracting limit set which is neither an equilibrium nor a limit cycle. Near the strange attractor the system exhibits essentially random behavior. An approach to the statistical analysis of the dynamics in the chaotic regime is suggested. We then generalize our conclusions to higher dimensions and continuous models (e.g. the nonlinear von Foerster equation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnold, V. I.: Ordinary Differential Equations. Cambridge, Mass.: M.I.T. Press 1973.

    Google Scholar 

  • Auslander, D., Oster, G., Huffaker, C.: Dynamics of interacting populations. J. Franklin Inst. 1974.

  • Beddington, J.: Age distribution and the stability of simple discrete time population models (preprint, 1975).

  • Beddington, J., Free, C. A.: Age structure, density dependence and limit cycles in predator-prey interactions. Theo. Popln. Biol. (to appear, 1975).

  • Beddington, J., Free, C., Lawton, J.: Dynamic complexity in predator-prey models framed in difference equations. Nature 255, 58–60 (1975).

    Google Scholar 

  • Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. (Lecture Notes in Mathematics, Vol. 470.) New York: Springer 1975.

    Google Scholar 

  • Bowen, R., Ruelle, D.: The ergodic theory of axiom A flows. Inv. Math. 1975.

  • Gurtin, M., MacCarmny, R.: Non-linear age-dependent population dynamics. Arch. Rat'l. Mech. Anal. 54, 281–300 (1974).

    Google Scholar 

  • Hassell, M., Lawton, J., May, R.: Pattern of dynamical behavior in single-species populations (preprint, 1975).

  • Hopf, E.: Abzweigung einer periodischen Lösung eines Differentialsystems. Akad. Wiss. Leipzig 94, 1–2 (1942).

    Google Scholar 

  • Hoppenstead, F., Hyman, J.: Periodic solutions of a logistic difference equation. SIAM Regional Conf., Univ. of Iowa. 1975.

  • Howard, R.: Dynamic Probabilistic Systems. Vol. 1: Markov Models, Vol. 2: Semi-Markov and Decision Processes. New York: J. Wiley 1971.

    Google Scholar 

  • Katz, A.: Principles of Statistical Mechanics: The Information Theory Approach. San Francisco: W. H. Freeman 1967.

    Google Scholar 

  • Keyfitz, N.: Introduction to the Mathematics of Populations. Reading, Mass.: Addison-Wesley 1968.

    Google Scholar 

  • Kifer, Ju. I.: On small random perturbations of some smooth dynamical systems. Math. USSR Izvestija 8 (5), 1083–1107 (1974).

    Google Scholar 

  • Krebs, C. J.: Ecology. New York: Harper and Row 1972.

    Google Scholar 

  • Leslie, P. H.: On the use of matrices in certain population mathematics. Biometrika 35, 183–212 (1945).

    Google Scholar 

  • Leslie, P. H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948).

    Google Scholar 

  • Li, T.-Y., Yorke, J. A.: Period three implies chaos. Amer. Math. Monthly (to appear, 1975).

  • Lorenz, E.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 130–141 (1963).

    Google Scholar 

  • Marsden, J., McCracken, M.: The Hopf Bifurcation. (Lecture Notes in Mathematics.) New York: Springer 1976.

    Google Scholar 

  • May, R. M.: Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).

    Google Scholar 

  • May, R.: Stability and Complexity in Model Ecosystems, 2nd ed. Princeton Univ. Press 1975.

  • May, R., Oster, G.: Bifurcations and Dynamic Complexity in Simple Ecological Models. Amer. Natur (to appear, 1975).

  • Metropolis, N., Stein, M., Stein, P.: Stable states of a non-linear transformation. Numerische Mathematik 10, 1–9 (1967).

    Google Scholar 

  • Metropolis, N., Stein, M., Stein, P.: On finite limit sets for transformations on the unit interval. J. Combinatorial Theory 15 (1), 25–43 (1973).

    Google Scholar 

  • Myberg, P. J.: Iteration der realen Polynome zweiten Grades III. Ann. Acad. Scientiarium Fennicae. Ser. A 336, 1–18 (1963).

    Google Scholar 

  • Newhouse, S. E.: Diffeomorphisms with infinitely many sinks. Topology 12, 9–18 (1974).

    Google Scholar 

  • Oster, G., Auslander, D., Allen, T.: 1976.

  • Oster, G., Takahashi, Y.: Models for age specific interactions in a periodic environment. Ecological Monographs 44, 483–501 (1974).

    Google Scholar 

  • Oster, G., Guckenheimer, J.: Bifurcation Behavior of Population Models, in: The Hopf Bifurcation (Marsden, J., McCracken, M., eds.). New York: Springer 1976.

    Google Scholar 

  • Pennycuick, C., Compton, R., Beckingham, L.: A computer model for simulating the growth of two interacting populations. J. Theo. Biol. 18, 316–329 (1968).

    Google Scholar 

  • Pielou, E. C.: An Introduction to Mathematical Ecology. New York: Wiley-Interscience 1969.

    Google Scholar 

  • Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971).

    Google Scholar 

  • Sinai, Ja. G.: Gibbs measures in ergodic theory. Russian Math. Surveys 27 (4), 21–70 (1972).

    Google Scholar 

  • Smale, S.: Diffeomorphisms with Many Periodic Points, in: Differential and Combinatorial Topology (Cairns, S., ed.), p. 6380. Princeton Univ. Press 1965.

  • Stein, P., Ulam, S.: Non-linear transformation studies on electronic computers. Rozprawy Metamatyczne 39, 401–484 (1964).

    Google Scholar 

  • Trucco, E.: Mathematical models for cellular systems: the von Foerster Equation, Part I: Bull. Math. Biophys. 27, 285–303, Part II: 27, 449–471 (1963).

    Google Scholar 

  • Usher, M. B.: Developments in the Leslie Matrix Model, in: Mathematical Models in Ecology (Jeffers, J. N. R., ed.). Oxford: Blackwell 1972.

    Google Scholar 

  • Varley, G., Gradwell, G., Hassell, M.: Insect Population Ecology. Berkeley: Univ. of California Press 1974.

    Google Scholar 

  • Williamson, M.: The Analysis of Biological Populations. London: Edward Arnold Ltd., New York: Crane, Russak and Co. 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NSF Grant No. BMS 74-21240.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guckenheimer, J., Oster, G. & Ipaktchi, A. The dynamics of density dependent population models. J. Math. Biology 4, 101–147 (1977). https://doi.org/10.1007/BF00275980

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275980

Keywords

Navigation