Skip to main content
Log in

Double recombinants in mitosis

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A mathematical model for the random process of repeated cell division and recombination in two nonoverlapping genetic intervals is formulated and investigated. From this model, a test for statistical independence of recombination in the two intervals and a method of estimating the rate of double recombination are developed. Crossing over in both intervals, crossing over in one and gene conversion in the other, and gene conversion in both are treated. For markers on the same chromosome, all possible arrangements of the loci relative to the centromere are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P.: The statistical theory of bacterial populations subject to to mutation. J. Roy. Stat. Soc. B. 14, 1–40 (1952)

    Google Scholar 

  • Bailey, N. T. J.: The elements of stochastic processes. New York: Wiley 1964

    Google Scholar 

  • Bartlett, M. S.: An introduction to stochastic processes. Cambridge: Cambridge University Press 1955

    Google Scholar 

  • Bickel, P. J., Doksum, K. A.: Mathematical statistics. San Francisco: Holden-Day 1977

    Google Scholar 

  • Catecheside, D. G.: The genetics of recombination. Baltimore: University Park Press 1977

    Google Scholar 

  • Christianson, M. L.: Mitotic crossing-over as an important mechanism of floral sectoring in Tradescantia. Mutat. Res. 28, 389–395 (1975)

    Google Scholar 

  • Courant, R., Hilbert, D.: Methods of mathematical physics, Vol. II. New York: Interscience 1962

    Google Scholar 

  • Crump, K. S., Hoel, D. G.: Mathematical models for estimating mutation rates in cell populations. Biometrika 61, 237–252 (1974)

    Google Scholar 

  • Esposito, M. S.: Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc. Natl. Acad. Sci. USA 75, 4436–4440 (1978)

    Google Scholar 

  • Esposito, M. S., Wagstaff, J. E.: Mechanisms of mitotic recombination. In: Strathern, J. N., Jones, E. W., Broach, J. R. (eds.): The molecular biology of the yeast Saccharomyces: life cycle and inheritance, pp. 341–370. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1981

    Google Scholar 

  • Fabre, F.: Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature 272, 797–798 (1978)

    Google Scholar 

  • Fabre, F., Roman, H.: Genetic evidence for inducibility of recombination competence in yeast. Proc. Natl. Acad. Sci. USA 74, 1667–1671 (1977)

    Google Scholar 

  • Festa, R. S., Meadows, A. T., Boshes, R. A.: Leukemia in a black child with Bloom's syndrome. Cancer 44, 1507–1510 (1979)

    Google Scholar 

  • Gautschi, W., Cahill, W. F.: Exponential integral and related functions. In: Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 227–251. Washington: National Bureau of Standards 1964

    Google Scholar 

  • Golin, J. G.: Dissertation, The University of Chicago, Chicago, 1979

    Google Scholar 

  • Grüneberg, H.: The case for somatic crossing over in the mouse. Genet. Res. 7, 58–75 (1966)

    Google Scholar 

  • Hartwell, L. H., Unger, M. W.: Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75, 422–435 (1977)

    Google Scholar 

  • Hawthorne, D. C., Leupold, U.: Suppressor mutations in yeast. Curr. Top. Microbiol. Immunol. 64, 1–47 (1974)

    Google Scholar 

  • Holliday, R.: The mechanism of gene conversion in fungi. Genet. Res. 5, 282–304 (1964)

    Google Scholar 

  • Hurst, D. D., Fogel, S.: Mitotic recombination and heteroallelic repair in Saccharomyces cerevisiae. Genetics 50, 435–458 (1964)

    Google Scholar 

  • Käfer, E.: Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19 33–131 (1977)

    Google Scholar 

  • Katz, E. R., Kao, V.: Evidence for mitotic recombination in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 71, 4025–4026 (1974)

    Google Scholar 

  • Kunz, B. A., Haynes, R. H.: Phenomenology and genetic control of mitotic recombination in yeast. Ann. Rev. Genet. 15, 57–89 (1981)

    Google Scholar 

  • Lea, D. E., Coulson, C. A.: The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1949)

    Google Scholar 

  • Luria, S. E., Delbrück, M.: Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943)

    Google Scholar 

  • Malone, R. E., Golin, J. G., Esposito, M. S.: Mitotic versus meiotic recombination in Saccharomyces cerevisiae. Curr. Genet. 1, 241–248 (1980)

    Google Scholar 

  • Meselson, M. S., Radding, C. M.: A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72, 358–361 (1975)

    Google Scholar 

  • Minet, M., Grossenbacher-Grunder, A.-M., Thuriaux, P.: The origin of a centromere effect on mitotic recombination. Curr. Genet. 2, 53–60 (1980)

    Google Scholar 

  • Montelone, B. A., Prakash, S., Prakash, L.: Spontaneous mitotic recombination in mms8−1, an allele of the CDC9 gene of Saccharomyces cerevisiae. J. Bact. 147, 517–525 (1981)

    Google Scholar 

  • Moore, C. W., Sherman, F.: Role of DNA sequences in genetic recombination in the iso-1 -cytochrome-c gene of yeast. I. Discrepancies between physical distances and genetic distances determined by five mapping procedures. Genetics 79, 397–418 (1975)

    Google Scholar 

  • Nakai, S., Mortimer, R. K.: Studies of the genetic mechanism of radiation-induced mitotic segregation in yeast. Molec. Gen. Genet. 103, 329–338 (1969)

    Google Scholar 

  • Nöthiger, R., Dübendorfer, A.: Somatic crossing-over in the housefly. Molec. Gen. Genet. 112, 9–13 (1971)

    Google Scholar 

  • Peizer, D. B., Pratt, J. W.: A normal approximation for binomial, F, beta, and other common related tail probabilities. I. J. Amer. Stat. Assoc. 63, 1416–1456 (1968)

    Google Scholar 

  • Prakash, S., Prakash, L., Burke, W., Montelone, B. A.: Effects of the RAD52 gene on recombination in Saccharomyces cerevisiae. Genetics 94, 31–50 (1980)

    Google Scholar 

  • Roman, H.: Studies of gene mutation in Saccharomyces. Cold Spring Harbor Symp. Quant. Biol. 21, 175–183 (1956)

    Google Scholar 

  • Roman, H., Jacob, F.: A comparison of spontaneous and ultraviolet-induced allelic recombination with reference to the recombination of outside markers. Cold Spring Harbor Symp. Quant. Biol. 23, 155–160 (1958)

    Google Scholar 

  • Stern, C.: Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730 (1936)

    Google Scholar 

  • Tan, W. Y.: On distribution theories for the number of mutants in cell populations. Soc. Ind. Appl. Math. J. Appl. Math. 42, 719–730 (1982)

    Google Scholar 

  • Vig, B. K., Paddock, E. F.: Studies on the expression of somatic crossing over in Glycene max L. Theor. Appl. Genet. 40, 316–321 (1970)

    Google Scholar 

  • Wheals, A. E.: Size-control models of Saccharomyces cerevisiae cell proliferation. Molec. Cellul. Biol. 2, 361–368 (1982)

    Google Scholar 

  • Wildenberg, J.: The relation of mitotic recombination to DNA replication in yeast pedigrees. Genetics 66, 291–304 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Science Foundation Grant DEB81-03530.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagylaki, T. Double recombinants in mitosis. J. Math. Biology 19, 13–42 (1984). https://doi.org/10.1007/BF00275929

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275929

Key words

Navigation