Skip to main content
Log in

Performance of one- and two-dimensional models for a slow flow system in a long, permeable tubule

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A radially symmetric slow flow system in a long cylinder with moderate wall leakage is considered, with physical parameters taken from the renal proximal tubule. Dimensional analysis yields a simplified system which, under certain assumptions, is well-posed, and possesses a unique solution if a solution exists. A lumped parameter analysis generates a one-dimensional model identical to a typical one-dimensional model in a special case. The one- and two-dimensional models agree well in the situations examined. When the wall fluxes are of a certain class, the concentration to which the solution tends as the fluid proceeds down the tubule can be computed algebraically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b:

terms in example inequalities

A, B, C, D:

real-valued functions of a scalar variable on [0, 1]

c:

concentration

c0,c1,c2 :

constants

C0,C1, C2 :

constants

D:

diffusion coefficient

d1, d2 :

scalar domains

f(r):

factor of nondimensional concentration

F:

flux

g(y):

factor of nondimensional concentration

G:

gas constant

h(r):

function arising from a solution of the PDM

I:

interval of integration

Js :

solute flux averaged over axial variable

K:

constant

kj :

constant associated with wall solute pump: j=1, constant pump; j=2, pump ∝ concentration

L:

length of PT

Lp :

hydraulic conductivity of wall of PT

M:

volume flow into PT from glomeralus

p:

pressure

P:

permeability of PT to solute

Q:

flow resistance

r:

radial variable

R:

radius of PT

Re:

Reynolds number

S:

nondimensional constant

Sc:

Schmidt number

u:

axial velocity averaged over radial variable

v:

velocity

x:

limit of integration

y:

axial variable

Y:

number in the interval [0, 1]

z:

dummy variable

α:

constant

γ:

dimensionless concentration-1

δ:

ratio of tubule radius to length

Δ:

difference between value inside and outside PT at wall

ɛ:

small positive parameter

μ:

viscosity

ϱ:

density

φ:

decimal percentage of fluid leaving the PT through the walls

σ:

reflection coefficient

ω:

dummy variable

f:

fixed value

i:

value at glomerular end of PT

0:

value at distal end of PT

r:

radial

s:

solute; serosa

v:

volume

y:

axial

∞:

limiting value

-:

log mean

~:

used to distinguish between the function ci(r) and the constant ci

boldface:

dimensional

normal typeface:

dimensionless

References

  1. Andreoli, T. E., Schafer, J. A.: Principles of water and nonelectrolyte transport across membranes. In: Andreoli, T. E., Huffman, J. F., Fanestil, D. D., (eds.) Membrane physiology, pp. 165–184. New York: Plenum Medical Book Co. 1980

    Google Scholar 

  2. Deen, W. M., Robertson, C. R., Brenner, B. M.: Concentration polarization in an ultrafiltering capillary. Biophys. J. 14, 412–431 (1974)

    Google Scholar 

  3. Foster, D., Jacquez, J. A., Daniels, E.: Solute concentration in the kidney—II. Input-output studies on a central core model. Math. Biosci. 32, 337–360 (1976)

    Google Scholar 

  4. Friedlander, S. K., Walser, M.: Some aspects of flow and diffusion in the proximal tubule of the kidney. J. Theor. Biol. 8, 87–96 (1965)

    Google Scholar 

  5. Gertz, K. H., Boylan, J. W.: Glomerular-tubular balance. In: Orloff, J., Berliner, R., (eds.) Handbook of physiology-renal physiology, pp. 763–790. Washington, DC: American Physiological Society 1973.

    Google Scholar 

  6. Gottschalk, C. W., Mylle, M.: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am. J. Physiol. 185, 430–440 (1956)

    Google Scholar 

  7. Guyton, A. C.: Textbook of medical physiology, 7th ed. Philadelphia: W. B. Saunders Co. 1981

    Google Scholar 

  8. Hayslett, J. P., Kushgarian, M., Epstein, F. H.: Changes in proximal and distal tubular reabsorption produced by rapid expansion of extracellular fluid. J. Clin. Invest. 46, 1254–1263 (1967)

    Google Scholar 

  9. Holliday, M. A., Egan, T. J.: Renal function in man, dog and rat. Nature 193, 748–755 (1962)

    Google Scholar 

  10. Hornbeck, R. W., Rouleau, W. T., Osterle, F.: Laminar entry problem in porous tubes. Phys. Fluids 6, 1649–1654 (1963)

    Google Scholar 

  11. Jacquez, J. A., Foster, D., Daniels, E.: Solute concentration in the kidney—I. A model of the renal medulla and its limit cases. Math. Biosci. 32, 307–335 (1976)

    Google Scholar 

  12. Jamison, R. L., Kriz, W.: Urinary concentrating mechanism. New York: Oxford University Press 1982

    Google Scholar 

  13. Kokko, J. P., Burg, M. B., Orloff, J.: Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50, 69–76 (1971)

    Google Scholar 

  14. Kozinski, A. A., Schmidt, F. P., Lightfoot, E. N.: Velocity profiles in porous-walled ducts. Ind. Eng. Chem. Fundam. 9, 502–505 (1970)

    Google Scholar 

  15. Langlois, W. E.: Slow viscous flow. New York: The Macmillan Co. 1964

    Google Scholar 

  16. Macey, R. I.: Pressure flow patterns in a cylinder with reabsorbing walls. Bull. Math. Biophys. 25, 1–8 (1963)

    Google Scholar 

  17. Macey, R. I.: Hydrodynamics in the renal tubule. Bull. Math. Biophys. 27, 117–124 (1965)

    Google Scholar 

  18. Marsh, D. J.: private communication

  19. Marshall, E. A., Trowbridge, E. A.: Flow of a Newtonian fluid through a permeable tube: the application to the proximal renal tubule. Bull. Math. Biol. 36, 457–476 (1974)

    Google Scholar 

  20. Mejia, R.: private communication

  21. Moore, L. C., Marsh, D. J.: How descending limb of Henle's loop permeability affects hypertonic urine formation. Am. J. Physiol. 239, F57-F71 (1980)

    Google Scholar 

  22. O'Donnell, M. J., Aldis, G. K., Maddrell, S. H. P.: Measurements of osmotic permeability in the Malpighian tubules of an insect, Rhodnius prolixus Stål. Proc. R. Soc. Lond. B. 216, 267–277 (1982)

    Google Scholar 

  23. Oliver, J., MacDowell, M.: The structural and functional aspects of the handling of glucose by the nephrons and the kidney and their correlation by means of structural-functional equivalents. J. Clin. Invest. 40, 1093–1112 (1961)

    Google Scholar 

  24. Palatt, P. J., Sackin, H., Tanner, R. I.: A hydrodynamic model of a permeable tubule. J. Theor. Biol. 44, 287–303 (1974)

    Google Scholar 

  25. Pedley, T. J.: Calculation of unstirred layer thickness in membrane transport experiments: a survey. Quart. Rev. Biophys. 16, 115–150 (1983)

    Google Scholar 

  26. Pitts, R. F.: Physiology of the kidney and body fluids. Chicago: Year Book Medical Publishers, Inc. 1974

    Google Scholar 

  27. Renkin, E. M., Gilmore, J. P.: Glomerular filtration. In: Orloff, J., Berliner, R. (eds.) Handbook of physiology-renal physiology, pp. 185–248. Washington, DC: American Physiological Society 1973

    Google Scholar 

  28. Sackin, H., Boulpaep, E. L.: Models for coupling of salt and water transport. Proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66, 671–733 (1975)

    Google Scholar 

  29. Stephenson, J. L.: Concentrating engines in the kidney I. Central core model of the renal medulla. Biophys. J. 13, 512–545 (1973)

    Google Scholar 

  30. Stephenson, J. L., Mejia, R., Tewarson, R. P.: Model of solute and water movement in the kidney. Proc. Natl. Acad. Sci. USA 73 (1), 252–256 (1976)

    Google Scholar 

  31. Temam, R.: On the theory and numerical analysis of the Navier-Stokes equations. Lecture Notes 9, College Park, MD: University of Maryland 1973

  32. Weinstein, A. M.: Nonequilibrium thermodynamic model of the rat proximal tubule epithelium. Biophys. J. 44, 153–170 (1983)

    Google Scholar 

  33. Weinstein, A. M., Stephenson, J. L.: Electrolyte transport across a simple epithelium. Biophys. J. 27, 165–186 (1979)

    Google Scholar 

  34. Weinstein, A. M., Stephenson, J. L.: Coupled water transport in standing gradient models of the lateral intercellular space. Biophys. J. 35, 167–191 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrish, K. Performance of one- and two-dimensional models for a slow flow system in a long, permeable tubule. J. Math. Biol. 24, 237–258 (1986). https://doi.org/10.1007/BF00275636

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275636

Key words

Navigation