Skip to main content
Log in

Complete moles have paternal chromosomes but maternal mitochondrial DNA

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Complete hydatidiform moles contain only paternal chromosomes. To learn more of their origin, we used restriction endonuclease site polymorphisms found in the parental mitochondrial DNAs to demonstrate that moles contain exclusively maternal mitochondrial DNA. Thus, moles must arise from the fusion of one or two sperm with a mature but anucleate ovum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, Bruijn MHL de, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Bieber FR, Nance WE, Morton CC, Brown JA, Redwine FO (1981) Genetic studies of an acardiac monster: evidence of polar body twinning in man. Science 213:775–777

    Google Scholar 

  • Blin N, Stafford DW (1976) A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3: 2303–2308

    Google Scholar 

  • Case JT, Wallace DC (1981) Maternal inheritance of mitochondrial DNA polymorphisms in cultured human fibroblasts. Somatic Cell Genet 7:103–108

    Google Scholar 

  • Denaro M, Blanc H, Johnson MJ, Chen KH, Wilmsen E, Cavalli-Sforza LL, Wallace DC (1981) Ethnic variation in Hpa I endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl Acad Sci USA 78:5768–5772

    Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980a) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77: 6715–6719

    Google Scholar 

  • Giles RE, Stroynowski I, Wallace DC (1980b) Characterization of mitochondrial DNA in chloramphenicol-resistant interspecific hybrids and a cybrid. Somatic Cell Genet 6:543–554

    Google Scholar 

  • Gresson RAR (1940) Presence of the sperm middle-piece in the fertilized egg of the mouse (Mus musculus). Nature 145:425

    Google Scholar 

  • Gresson RAR (1941) A study of the cytoplasmic inclusions during maturation, fertilization and the first cleavage division of the egg of the mouse. J Microscop Sci 83:35–60

    Google Scholar 

  • Jacobs PA, Wilson CM, Sprenkle JA, Rosenshein NB, Migeon BR (1980) Mechanism of origin of complete hydatidiform moles. Nature 286:714–716

    Google Scholar 

  • Kajii T, Ohama K (1977) Androgenetic origin of hydatidiform mole. Nature 268:633–634

    Google Scholar 

  • Ohama K, Kajii T, Okamoto E, Fukuda Y, Imaizumi K, Tsukahara M, Kobayashi K, Hagiwara K (1981) Dispermic origin of XY hydatidiform moles. Nature 292:551–552

    Google Scholar 

  • Pattillo RA, Sasaki S, Katayama KP, Roesler M, Mattingly RF (1981) Genesis of 46,XY hydatidiform mole. Am J Obstet Gynecol 141: 104–105

    Google Scholar 

  • Ringertz NR, Savage RE (1976) Cell hybrids. Academic Press, New York

    Google Scholar 

  • Shipman C Jr, Smith SH, Drach JC (1972) Selective inhibition of nuclear DNA synthesis by 9-β-d-arabinofuranosyl adenine in rat cells transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 69:1753–1757

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Surti U, Szulman AE, O'Brien S (1979) Complete (classic) hydatidiform mole with 46,XY karyotype of paternal origin. Hum Genet 51: 153–155

    Google Scholar 

  • Surti U, Szulman AE, O'Brien S (1982) Dispermic origin and clinical outcome of three complete hydatidiform moles with 46,XY karyotype. Am J Obstet Gynecol (Accepted for publication)

  • Szulman AE, Surti U (1978a) The syndromes of hydatidiform mole II. Morphologic evolution of the complete and partial mole. Am J Obstet Gynecol 132:20–27

    Google Scholar 

  • Szulman AE, Surti U (1978b) The syndromes of hydatidiform mole I. Cytogenetic and morphologic correlations. Am J Obstet Gynecol 131:665–671

    Google Scholar 

  • Wallace DC, Assignment of the chloramphenicol resistance gene to mitochondrial deoxyribonucleic acid and analysis of its expression in cultured human cells. Mol Cell Biol 1:697–710

  • Wallace DC, Bunn CL, Eisenstadt JM (1975) Cytoplasmic transfer of chloramphenicol resistance in human tissue culture cells. J Cell Biol 67:174–188

    Google Scholar 

  • Wallace DC, Bunn CL, Eisenstadt JM (1977) Mitotic segregation of cytoplasmic determinants for chloramphenicol resistance in mammalian cells II: fusions with human cell lines. Somatic Cell Genet 3:93–119

    Google Scholar 

  • Yamashita K, Wake N, Araki T, Ichinoe K Kuroda M (1981) A further HLA study of hydatidiform moles. Gynecol Oncol 11:23–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallace, D.C., Surti, U., Adams, C.W. et al. Complete moles have paternal chromosomes but maternal mitochondrial DNA. Hum Genet 61, 145–147 (1982). https://doi.org/10.1007/BF00274205

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00274205

Keywords

Navigation