Skip to main content
Log in

Bacterial ribosomes with two ambiguity mutations: Effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A set of mutants affected in translational fidelity was constructed by transduction within an otherwise isogenic Escherichia coli B argF40 argR11 background. Alterations in ribosomal proteins S4, S5, S12 and L6 either as single mutations or in various combinations were compared for their effects on aminoglycoside phenotypes, on in vivo and in vitro mis-reading and on the rate of peptide bond formation. Results may be summarized as follows: (i) Strains carrying two ambiguity mutations on the ribosome without any restrictive mutation are viable. When together, they only weakly increase the level of mistranslation as judged by several in vivo and in vitro test systems. (ii) The combination of two ram mutations causes a very strong cooperative increase of streptomycin sensitivity, irrespective of whether the strains have a wild-type S12 or mutationally altered S12 proteins (of the drug-resistant or-dependent types) on their ribosomes; (iii) The S4 and S5 ram mutations do not alter the response of the ribosome to aminoglycosides of the 2-desoxystreptamine group which are structurally unrelated to streptomycin. This is interpreted in terms of an effect of these ram mutations on the streptomycin binding site but not on the site(s) of binding of the other aminoglycosides. (iv) The rate of polypeptide bond formation which was determined from the kinetics of β-galactosidase induction is not significantly changed in strains bearing the ram and the strA (streptomycin-resistant) alleles. In contrast, the L6 and the strA (streptomycin-dependent) alleles strongly reduce the rate of polypeptide elongation which mechanistically might be connected with restriction of ambiguity (Ninio, 1974) in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Archibald, R.M.: Determination of citrulline and allantoin and demonstration of citrulline in blood plasma. J. Biol. Chem. 156, 121–142 (1944)

    Google Scholar 

  • Bachmann, B.J., Low, K.B., Taylor, A.L.: Recalibrated linkage map of Escherichia coli K12. Bact. Rev. 40, 116 (1976)

    Google Scholar 

  • Biswas, D.K., Gorini, L.: Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA's. J. Mol. Biol. 64, 119–134 (1972)

    Google Scholar 

  • Bollen, A., Cabezon, T., De Wilde, M., Villaroel, R., Herzog, A.: Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J. Mol. Biol. 99, 795–806 (1975)

    Google Scholar 

  • Breckenridge, Gorini, L.: Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65, 9–25 (1970)

    Google Scholar 

  • Buckel, P., Buchberger, A., Böck, A., Wittmann, H.G.: Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol. Gen. Genet. 158, 47–54 (1977)

    Google Scholar 

  • Cabezon, T., Herzog, A., De Wilde, M., Villarroel, R., Bollen, A.: Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. III. A ram mutation in the structural gene for protein S5 (rpxE). Mol. Gen. Genet. 144, 59–62 (1976)

    Google Scholar 

  • Chang, F. N., Flaks, J.G.: The binding of dihydrostreptomycin to E. coli ribosomes. Characteristics and equilibrium of the reaction. Antimicrobial Agents Chemotherapy 2, 294–307 (1972)

    Google Scholar 

  • Davies, J., Davis, B.D.: Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J. Biol. Chem. 243, 3312–3316 (1968)

    Google Scholar 

  • Edelmann, P., Gallant, J.: Mistranslation in E. coli. Cell 10, 131–137 (1977a)

    Google Scholar 

  • Edelmann, P., Gallant, J.: On the translational error theory of aging. Proc. Natl. Acad. Sci. U.S.A. 74, 3396–3398 (1977b)

    Google Scholar 

  • Fraenkel, D.G., Neidhardt, F.C.: Use of chloramphenicol to study control of RNA synthesis in bacteria. Biochim. Biophys. Acta 53, 96–100 (1961)

    Google Scholar 

  • Funatsu, G., Schiltz, E., Wittmann, H.G.: Ribosomal proteins XXVII. Localisation of the amino acid exchanges in protein S5 from Escherichia coli mutants resistant to spectinomycin. Mol. Gen. Genet. 114, 106–111 (1971)

    Google Scholar 

  • Funatsu, G., Wittmann, H.G.: Ribosomal proteins XXXIII. Localisation of amino acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J. Mol. Biol. 68, 547–550 (1972)

    Google Scholar 

  • Garvin, R.T., Gorini, L.: A new gene for ribosomal restriction in Escherichia coli. Mol. Gen. Genet. 137, 73–78 (1975)

    Google Scholar 

  • Gorini, L.: Regulation en retour (feedback control) de la synthese de l'arginine chez Escherichia coli. Bull. Soc. Chim. Biol. 40, 1939–1952 (1958)

    Google Scholar 

  • Gorini, L.: Streptomycin and misreading of the genetic code. In: Ribosomes (Nomura, M., Tissières, A., Lengyel, P., eds.), Cold Spring Harbor Monograph Series, pp. 791–803. New York: Cold Spring Harbor Laboratory 1974

    Google Scholar 

  • Gorini, L., Kataja, E.: Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc. Natl. Acad. Sci. U.S.A. 51, 487–493 (1964)

    Google Scholar 

  • Gupta, R.S., Schlessinger, D.: Coupling of rates of transcription, translation, and messenger ribonucleic acid degradation in streptomycin-dependent mutants of Escherichia coli. J. Bacteriol. 125, 84–93 (1976)

    Google Scholar 

  • Hasenbank, R., Guthrie, C., Stöffler, G., Wittmann, H.G., Rosen, L., Apirion, D.: Electrophoretic and immunological studies on ribosomal proteins of 100 Escherichia coli revertants from streptomycin dependence. Mol. Gen. Genet. 127, 1–18 (1973)

    Google Scholar 

  • Itoh, T., Wittmann, H.G.: Amino acid replacements in protein S5 and S12 of two Escherichia coli revertants from streptomycin dependence to independence. Mol. Gen. Genet. 127, 19–32 (1973)

    Google Scholar 

  • Jones, M.E.: Carbamyl phosphate synthesis and utilization. In: Methods in enzymology (Colowick, S.P., Kaplan, N.O., eds.), Vol. 5, pp. 903–925. New York and London: Academic Press 1962

    Google Scholar 

  • Kaltschmidt, E., Wittmann, H.G.: Ribosomal proteins, VII. Two-dimensional polyacrylamide gel electrophoresis for finger-printing of ribosomal proteins. Anal. Biochem. 36, 401–412 (1970)

    Google Scholar 

  • Kurland, C.G.: Structure and function of the bacterial ribosome. Ann. Rev. Biochem. 46, 173–200 (1977)

    Google Scholar 

  • Lando, D., Cousin, M.-A., Ojasoo, T., Raynaud, J.P.: Paromomycin and dihydrostreptomycin binding to Escherichia coli ribosomes. Eur. J. Biochem. 66, 597–606 (1976)

    Google Scholar 

  • Miller, J.H.: Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory 1972

    Google Scholar 

  • Ninio: A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. J. Mol. Biol. 84, 297–313 (1974)

    Google Scholar 

  • Nomura, M., Morgan, E.A., Jaskunas, S.R.: Genetics of bacterial ribosomes. Ann. Rev. Genet. 11, 297–347 (1977)

    Google Scholar 

  • Orgel, L.E.: The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl. Acad. Sci. U.S.A. 49, 517–521 (1963)

    Google Scholar 

  • Piepersberg, W., Böck, A., Wittmann, H.G.: Effect of different mutations in ribosomal protein S5 of Escherichia coli on translational fidelity. Mol. Gen. Genet. 140, 91–100 (1975a)

    Google Scholar 

  • Piepersberg, W., Böck, A., Yaguchi, M., Wittmann, H.G.: Genetic position and amino acid replacements of several mutations in ribosomal protein S5 from Escherichia coli. Mol. Gen. Genet. 143, 43–52 (1975b)

    Google Scholar 

  • Rosset, R., Gorini, L.: A ribosomal ambiguity mutation. J. Mol. Biol. 39, 95–112 (1969)

    Google Scholar 

  • Schleif, R., Hess, W., Finkelstein, S., Ellis, D.: Induction kinetics of the L-arabinose operon of Escherichia coli. J. Bacteriol. 115, 9–14 (1973)

    Google Scholar 

  • Schreiner, G., Nierhaus, K.: Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J. Mol. Biol. 81, 71–82 (1973)

    Google Scholar 

  • Tai, P.C.: The interaction of streptomycin with ribosomes treated with colicin E3. Fed. Proc. 35, 1352 (1976)

    Google Scholar 

  • Weber, K., Konigsberg, W.: Protein of RNA phages. In: RNA phages (Zinder, N.D., ed.), Cold Spring Harbor Monograph Series, pp. 51–84. New York: Cold Spring Harbor Laboratory 1975

    Google Scholar 

  • Zabin, I., Fowler, A.V.: β-galactosidase and thiogalactoside trans-acetylase. In: The lactose operon (Beckwith, J.R., Zipser, D., eds.), Cold Spring Harbor Monograph Series, pp. 27–47. New York: Cold Spring Harbor Laboratory 1970

    Google Scholar 

  • Zengel, J.M., Young, R., Dennis, P.P., Nomura, M.: Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotropic, streptomycin-resistant mutants of Escherichia coli. J. Bacteriol. 129, 1320–1329 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piepersberg, W., Noseda, V. & Böck, A. Bacterial ribosomes with two ambiguity mutations: Effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Molec. Gen. Genet. 171, 23–34 (1979). https://doi.org/10.1007/BF00274011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00274011

Keywords

Navigation