Skip to main content
Log in

Nicotiana chloroplast genome III. Chloroplast DNA evolution

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Nicotiana chloroplast genomes exhibit a high degree of diversity and a general similarity as revealed by restriction enzyme analysis. This property can be measured accurately by restriction enzymes which generate over 20 fragments. However, the restriction enzymes which generate a small number (about 10) of fragments are extremely useful not only in constructing the restriction maps but also in establishing the sequence of ct-DNA evolution. By using a single enzyme, Sma I, a elimination and sequential gain of its recognition sites during the course of ct-DNA evolution is clearly demonstrated. Thus, a sequence of ct-DNA evolution for many Nicotiana species is formulated. The observed changes are all clustered in one region to form a “hot spot” in the circular molecule of ct-DNA. The mechanisms involved for such alterations are mostly point mutations but inversion and deficiency are also indicated. Since there is a close correlation between the ct-DNA evolution and speciation in Nicotiana a high degree of cooperation and coordination betwen organellar and nuclear genomes is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bedbrook, J.R.; Bogorad, L. (1976): Endonuclease recognition sites mapped on zea mays chloroplast DNA. Proc. Natl. Acad. Sci. (USA) 73, 4309–4313

    Google Scholar 

  • Benzer, S. (1961): On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. (USA) 47, 403–416

    Google Scholar 

  • Brown, W.M.; George, M. Jr.; Wilson, A.C. (1979): Rapid evolution of animal mitochrondrial DNA. Proc. Natl. Acad. Sci. (USA) 76, 1967–1971

    Google Scholar 

  • Castora, F.J.; Arnheim, N.; Simpson, M.V. (1980): Mitochondrial DNA polymorphism: evidence that variants detected by restriction enzymes differs in nucleotide sequence rather than in methylation. Proc. Natl. Acad. Sci. (USA) 77, 6415–6419

    Google Scholar 

  • Chen, K.; Johal, S.; Wildman, S.G. (1976): Role of chloroplast and nuclear DNA genes during evolution of fraction 1 protein. In: Genetics and Biogenesis of Chloroplasts and Mitochondria (eds. Bucher, T.; Neupert, W.; Sebald, W.; Werner, S.), pp 3–11. Amsterdam: Elsevier North Holland Biomed. Press

    Google Scholar 

  • Goodspeed, T.H. (1954): The genus Nicotiana. pp. 283–314 Waltham, Mass.: Chronica Botanica

    Google Scholar 

  • Gray, J.C.; Kung, S.D.; Wildman, S.G.; Sheen, S.J. (1974): Origin of Nicotiana tabacum L. detected by polypeptide composition of Fraction 1 proteins. Nature 252, 226–227

    Google Scholar 

  • Helling, R.B.; Goodman, H.W.; Boyer, H.W. (1974): An analysis of endonuclease R EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J. Virology 14, 1235–1241

    Google Scholar 

  • Herrmann, R.G.; Whitfeld, P.R.; Bottomley, W. (1980): Construction of Sal I/PsT I restriction map of spinach chloroplast DNA using Low-gelling-temperature-agarose electrophoresis. Gene 8, 179–191

    Google Scholar 

  • Jurgenson, J.E. (1980): Nicotiana tabacum chloroplast DNA: structure and gene content, Ph D. Dissertation, Univ. Arizona

  • Jurgenson, J.E.; Bourque, D.P. (1981): Mapping of rRNA genes in an inverted repeat in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 8, 3505–3516

    Google Scholar 

  • Kolodner, R.; Tewari, K.K. (1975): The molecular size and conformation of chloroplast DNA from higher plants. Biochim. Biophys. Acta 402, 372–390

    Google Scholar 

  • Kung, S.D.: (1976). Tobacco fraction 1 protein: a unique genetic marker. Science 191, 429–434

    Google Scholar 

  • Kung, S.D. (1977): Expression of chloroplast genomes in higher plants. Ann. Rev. Plant Physiol. 28, 401–437

    Google Scholar 

  • Kung, S.D.; Lee, C.L.; Wood, D.D.; Moscarello, M.M. (1977): Evolutionary conservation of chloroplast genes coding for the large subunit of fraction 1 protein. Plant Physiol. 60, 89–94

    Google Scholar 

  • Kung, S.D.; Zhu, Y.S.; Chen K.; Shen, G.F.; Sisson V. (1981): Nicotiana chloroplast genome II. Chloroplast DNA alteration. Mol. Gen. Genet. 183, 20–24

    Google Scholar 

  • Rhodes, P.R.; Zhu, Y.S.; Kung, S.D. (1981): Nicotiana chloroplast genome I. chloroplast DNA diversity. Mol. Gen. Genet. 182, 106–111

    Google Scholar 

  • Rhodes, P.R.; Kung, S.D. (1981): Chloroplast DNA isolation: Purity achieved without nuclease digestion. Can. J. Biochem. (in press)

  • Scowcroft, W.R. (1979): Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi, Theor. Appl. Genet. 55, 133–137

    Google Scholar 

  • Sugiura, M.; Kusuda, J. (1979): Molecular cloning of tobacco chloroplast ribosomal RNA genes. Mol. Gen. Genet. 172, 137–141

    Google Scholar 

  • Wildman, S.G.; Lu-Liao, C.; Wong-Staal, F. (1973): Maternal inheritance, cytology, and macromolecular composition of defective chloroplasts in variegated mutant of Nicotiana tabacum. Planta 113, 293–312

    Google Scholar 

  • Walbot, V. (1977): Use of silica sol step gradients to prepare bundle sheath and mesophyll chloroplasts from Panicum maximum. Plant Physiol. 60, 102–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. von Wettstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, S.D., Zhu, Y.S. & Shen, G.F. Nicotiana chloroplast genome III. Chloroplast DNA evolution. Theoret. Appl. Genetics 61, 73–79 (1982). https://doi.org/10.1007/BF00261515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261515

Key words

Navigation