Skip to main content
Log in

Skolem's paradox and constructivism

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • BeesonM., Foundations of Constructive Mathematics (Springer Verlag, Berlin, 1985).

    Google Scholar 

  • BellJ. and SlomsonA., Models and Ultraproducts (North Holland, Amsterdam, 1971).

    Google Scholar 

  • Benacerraf, P., ‘What numbers could not be’, Philosophical Review 74 (1965).

  • BenacerrafP., ‘Skolem and the Skeptic’, Proceedings of the Aristotelian Society, SupplementaryVolumeLIX (1985), pp. 85–115.

    Google Scholar 

  • DiaconescuR., ‘Axiom of choice and complementation’, Proceedings of the American mathematical Society 51 (1975), 175–8.

    Google Scholar 

  • DummettM., (with the assistance of R. Minio), Elements of Intuitionism (Oxford University Press, 1977).

    Google Scholar 

  • Fourman, M. P. and Hyland, J. M. E., ‘Sheaf models for analysis’, in eds. M. P. Fourman, C. J. Mulvey and D. S. Scott, Applications of Sheaves (Springer Lecture Notes in Mathematics, no. 753, 1979).

  • FriedmanH., ‘The consistency of classical set theory relative to a set theory with intuitionistic logic’, Journal of Symbolic Logic 38 (1973), pp. 315–319.

    Google Scholar 

  • Grandy, R. E., Advanced Logic for Applications (D. Reidel, 1977).

  • Grayson, R. J., Intuitionistic Set Theory (D. Phil. Thesis, University of Oxford, 1978).

  • Greenleaf, N., ‘Liberal constructive set theory’, ed. F. Richman: Constructive Mathematics, Proceedings, New Mexico, 1980, Springer Lecture Notes in Mathematics No. 873 (Berlin, 1981), pp. 213–240.

  • Keisler, H. J., ‘On the quantifier “there exist uncountably many”’, Notices of the American Mathematical Society 15 (1968), p. 654.

  • KreiselG., ‘Weak completeness of intuitionistic predicate logic’, Journal of Symbolic Logic 27 (1962), 139–158.

    Google Scholar 

  • Kreisel, G. and Dyson, V., ‘Analysis of Beth's semantic construction of intuitionistic logic’, Technical report no. 3, Applied Mathematics and Statistics laboratories, Stanford University, Part II (1961).

  • LeivantD., ‘Notes on the completeness of the intuitionistic predicate calculus’, Report ZW 40/72, Mathematisch Centrum, Amsterdam, 1972.

    Google Scholar 

  • LeivantD., ‘Syntactic translations and provably recursive functions’, Journal of Symbolic Logic 50 (1985), 682–8.

    Google Scholar 

  • McCarty, D. C., Realizability and Recursive Mathematics (D. Phil. Thesis, University of Oxford, 1984). Released as a technical report by the Department of Computer Science, Carnegie-Mellon University, Pittsburgh, No. CMU-C2-84-131; revised version forthcoming as Computation and Construction (Oxford University Press).

  • McCarty, D. C., ‘Constructive validity is nonarithmetic’, (1986) (submitted to Journal of Symbolic Logic).

  • Minc, G. E., ‘The Skolem method in intuitionistic calculi’, Proceedings of the Steklov Institute of Mathematics 121 (1972): Logical and Logico-Mathematical Calculi, 2. (American Mathematical Society, 1974), pp. 73–109.

  • Minio, R., Finite and Countable Sets in Intuitionistic Analysis (M.Sc. Dissertation, University of Oxford, 1974), 35 pp.

  • MostowskiA., ‘An undecidable arithmetical statement’, Fundamenta Mathematicae 36 (1949), pp. 143–164.

    Google Scholar 

  • PowellW. C., ‘Extending Gödel's negative translation to ZF’, Journal of Symbolic Logic 40 (1975), 221–229.

    Google Scholar 

  • Quine, W. V. O., Methods of Logic, 2nd edition (Holt, Rinehart and Winston, 1959).

  • QuineW. V. O., Set Theory and Its Logic (Belnap Press, Harvard, 1963).

    Google Scholar 

  • Rogers, H., Theory of Recursive Functions and Effective Computability (McGraw-Hill, 1967).

  • Skolem, T., ‘Logische-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen (sic) Sätze nebst einem Theoreme über dichte Mengen’, 1920; pp. 103–135, in Fenstad, J. (ed.), Selected Works in Logic, Universitetsforlaget, Oslo, 1970.

  • Skolem, T., ‘Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre’, 1922; ibid, pp. 137–152.

  • SmorynskiC., ‘The axiomatization problem for fragments’, Annals of Mathematical Logic 14 (1978), pp. 193–227.

    Google Scholar 

  • deSwartH. ‘Another intuitionistic completeness proof’, Journal of Symbolic Logic 41 (1976), pp. 644–662.

    Google Scholar 

  • Tennant, N., Natural Logic (Edinburgh University Press, 1978).

  • TennantN., ‘Proof and Paradox’, Dialectica 36 (1982), pp. 265–296.

    Google Scholar 

  • Troelstra, A. S., ‘Completeness and validity for intuitionistic predicate logic’, Proceedings of the “Séminair internationale d'été et Colloque international de Logique à Clermont-Ferrand”, July 1975 (1977).

  • van Dalen, J., ‘Lecutures on intuitionism’, in Cambridge Summer School in Mathematical Logic, edited by A. Mathias and H. Rogers, pp. 1–94 (Springer 1973).

  • VaughtR., ‘The completeness of the logic with the added quantifier “there are uncountably many”’, Fundamenta Mathematicae 54 (1964), pp. 303–304.

    Google Scholar 

  • VeldmanW., ‘An intuitionistic completeness theorem for intuitionistic predicate logic’, Journal of Symbolic Logic 41 (1976), pp. 159–166.

    Google Scholar 

  • WrightC., ‘Skolem and the Skeptic’, Proceedings of the Aristotelian Society, SupplementaryVolumeLIX (1985), pp. 117–137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, C., Tennant, N. Skolem's paradox and constructivism. J Philos Logic 16, 165–202 (1987). https://doi.org/10.1007/BF00257838

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00257838

Navigation