1.

Anderson, I. M., Mathematical foundations of the Einstein field equations. Ph. D. Thesis (unpublished), University of Arizona (1976).

2.

Anderson, I. M., Tensorial Euler-Lagrange expressions and conservation laws. Aequations Mathematicae **17**, 255–291 (1978).

3.

Anderson, I. M., On the structure of divergence-free tensors. J. Math. Phys., **19**, 2570–2575 (1978).

4.

Aragone, C. & S. Deser, Constraints on gravitationally coupled tensor fields. II Nuovo Cimento 3 A N. **4**, 709–720 (1971).

5.

Corson, E. M., An Introduction to Tensors, Spinors and Relativistic Wave Equations. London: Blackie and Son, Ldt. 1955.

6.

du Plessis, J. C., Tensorial concomitants and conservation laws. Tensor **20**, 347–360 (1969).

7.

Einstein, A., Hamiltonsches Prinzip der allgemeinen Relativitätstheorie. Sitzber. Preuss. Akad. Wiss., 1916, 1111–1116.

8.

Horndeski, G. W., Tensorial concomitants of relative tensors and linear connections. Utilitas Math., **9**, 3–31 (1976).

9.

Horndeski, G. W. & D. Lovelock, Scalar tensor field theories. Tensor **24**, 79–92 (1972).

10.

Lovelock, D., The uniqueness of the Einstein field equations in a four-dimensional space. Arch. Rational Mech. Analy., **33**, 54–70 (1969).

11.

Lovelock, D., The Einstein tensor and its generalizations. J. Math. Phys. **12**, 498–501 (1971).

12.

Misner, C. W., Thorne, K. S., & J. A. Wheeler, Gravitation. San Francisco: W. H. Freeman and Co. 1973.

13.

Pirani, F. A. E., Lectures in General Relativity, In S. Deser and K. W. Fords (eds.), Brandeis Summer Institute in Theoretical Physics, Volume 1, Englewood, NJ.: Prentice Hall, 1965.

14.

Rund, H., Variational problems involving combined tensor fields. Abb. Math. Sem. Univ. Hamburg, **29**, 243–262 (1966).

15.

Rund, H. & D. Lovelock, Variational principles in the general theory of relativity. Jber. Deutsch. Math. Verein., **74**, 1–65 (1972).

16.

Wainwright, J., Invariance properties of spinor Lagrangians. I., Tensor **19**, 217–232 (1968).