Skip to main content
Log in

A Poincaré-Bendixson theorem for scalar reaction diffusion equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For scalar equations

$$u_t = u_{xx} + f(x, u, u_x )$$

with x ε S 1 and f ε C 2 we show that the classical theorem of Poincaré and Bendixson holds: the ω-limit set of any bounded solution satisfies exactly one of the following alternatives:

  • - it consists in precisely one periodic solution, or

  • - it consists of solutions tending to equilibrium as \(t \to \pm \infty \)

This is surprising, because the system is genuinely infinite-dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. Angenent 1, The Morse-Smale property for a semi-linear parabolic equation, J. Diff. Eq. 62 (1986), 427–442.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Angenent 2, The zeroset of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79–96.

    MATH  MathSciNet  Google Scholar 

  • S. Angenent & B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. AMS 307 (1988), 545–568.

    MathSciNet  Google Scholar 

  • I. Bendixson, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), 1–88.

    Google Scholar 

  • J. E. Billoti & J. P. LaSalle, Periodic dissipative processes, Bull. AMS 6 (1971), 1082–1089.

    Google Scholar 

  • P. Brunovský & B. Fiedler 1, Zero numbers on invariant manifolds in scalar reaction diffusion equations, Nonlin. Analysis TMA 10 (1986), 179–194.

    Google Scholar 

  • P. Brunovský & B. Fiedler 2, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported 1 (1988), 57–89.

    Google Scholar 

  • P. Brunovský & B. Fiedler 3, Connecting orbits in scalar reaction diffusion equations II: the complete solution, to appear in J. Diff. Eq.

  • X.-Y. Chen & H. Matano, Convergence of solutions of semilinear heat equations on S 1, in preparation.

  • E. A. Coddington & N. Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York 1955.

    Google Scholar 

  • C. M. Dafermos, Asymptotic behavior of solutions of evolution equations, in “Nonlinear Evolution Equations”, M. G. Crandall (ed.), Academic Press, New York 1978, 103–123.

    Google Scholar 

  • B. Fiedler, Discrete Ljapunov functionals and ω-limit sets, Mathematical Modelling and Numerical Analysis 23 (1989), 59–75.

    MathSciNet  Google Scholar 

  • B. Fiedler & J. Mallet-Paret, Connections between Morse sets for delay-differential equations, preprint 1987.

  • A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall 1964.

  • G. Fusco & W. M. Oliva, Jacobi matrices and transversality, to appear in Proc. Royal Soc. Edinburgh.

  • G. Fusco & C. Rocha, in preparation.

  • J. K. Hale, Ordinary Differential Equations, John Wiley & Sons, New York 1969.

    Google Scholar 

  • J. K. Hale, L. T. Magalhães & W. M. Oliva, An Introduction to Infinite Dimensional Dynamical Systems—Geometric Theory, Appl. Math. Sc. 47, Springer-Verlag, New York 1984.

    Google Scholar 

  • J. K. Hale & J. Vegas, A nonlinear parabolic equation with varying domain, Arch. Rational Mech. Analysis 86 (1984), 99–123.

    MathSciNet  Google Scholar 

  • P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston 1982.

    Google Scholar 

  • D. Henry 1, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, New York 1981.

    Google Scholar 

  • D. Henry 2, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eq. 59 (1985), 165–205.

    Article  MATH  MathSciNet  Google Scholar 

  • M. W. Hirsch 1, Differential equations and convergence almost everywhere in strongly monotone semiflows, in “Nonlinear Partial Differential Equations”, J. Smoller (ed.), AMS, Providence 1983, 267–285.

    Google Scholar 

  • M. W. Hirsch 2, Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere, SIAM J. Math. Anal. 16 (1985), 423–439.

    Article  MATH  MathSciNet  Google Scholar 

  • M. W. Hirsch 3, Stability and convergence in strongly monotone dynamical systems, to appear in J. reine angew. Math.

  • J. L. Kaplan & J. A. Yorke, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal. 6 (1975), 268–282.

    Article  MathSciNet  Google Scholar 

  • S. Lefschetz, Differential Equations: Geometric Theory, Wiley & Sons, New York 1963.

    Google Scholar 

  • J. Mallet-Paret 1, Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations, in “Systems of Nonlinear Partial Differential Equations”, J. M. Ball (ed.), D. Reidel, Dordrecht 1983, 351–366

    Google Scholar 

  • J. Mallet-Paret 2, Morse decompositions for delay-differential equations, J. Diff. Eq. 72 (1988), 270–315.

    MATH  MathSciNet  Google Scholar 

  • J. Mallet-Paret & G. R. Sell, in preparation.

  • J. Mallet-Paret & H. Smith, The Poincaré-Bendixson theorem for monotone cyclic feedback systems, preprint 1987.

  • P. Massatt, The convergence of scalar parabolic equations with convection to periodic solutions, preprint 1986.

  • H. Matano 1, Convergence of solutions of one-dimensional parabolic equations, J. Math. Kyoto Univ. 18 (1978), 221–227.

    MATH  MathSciNet  Google Scholar 

  • H. Matano 2, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sc. Kyoto Univ. 15 (1979), 401–454.

    MATH  MathSciNet  Google Scholar 

  • H. Matano 3, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29 (1982), 401–441.

    MATH  MathSciNet  Google Scholar 

  • H. Matano 4, Existence of nontrivial unstable sets for equilibriums of strongly orderpreserving systems, J. Fac. Sc. Univ. Tokyo Sec. IA 30 (1984), 645–673.

    MATH  MathSciNet  Google Scholar 

  • H. Matano 5, Asymptotic behavior of solutions of semilinear heat equations on S1, in “Nonlinear Diffusion Equations and Their Equilibrium States II”, W.-M. Ni & B. Peletier & J. Serrin (eds.), Springer-Verlag, New York 1988, 139–162.

    Google Scholar 

  • H. Matano 6, Asymptotic behavior of nonlinear diffusion equations, Res. Notes Math., Pitman, to appear.

  • H. Matano 7, Strongly order-preserving local semi-dynamical systems—theory and applications, in “Semigroups, Theory and Applications”, H. Brezis & M. G. Crandall & F. Kappel (eds.), John Wiley & Sons, New York 1986.

    Google Scholar 

  • K. Mischaikow, Conley's connection matrix, in “Dynamics of Infinite Dimensional Systems”, S.-N. Chow & J. K. Hale (eds.), Springer-Verlag, Berlin 1987, 179–186.

    Google Scholar 

  • K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. reine angew. Math. 211 (1962), 78–94.

    MATH  MathSciNet  Google Scholar 

  • H. Poincaré, Œuvres I, Gauthier-Villars, Paris 1928.

  • G. Pólya, Qualitatives über Wärmeausgleich, Z. Angew. Math. Mech. 13 (1933), 125–128.

    MATH  Google Scholar 

  • G. Sansone & R. Conti, Non-Linear Differential Equations, Pergamon Press, Oxford 1964.

    Google Scholar 

  • H. Smith, Monotone semiflows generated by functional differential equations, J. Diff. Eq. 66 (1987), 420–442.

    Article  MATH  Google Scholar 

  • R. A. Smith 1, The Poincaré-Bendixson theorem for certain differential equations of higher order, Proc. Roy. Soc. Edinburgh A 83 (1979), 63–79.

    MATH  Google Scholar 

  • R. A. Smith 2, Existence of periodic orbits of autonomous ordinary differential equations, Proc. Roy. Soc. Edinburgh A 85 (1980), 153–172.

    MATH  Google Scholar 

  • R. A. Smith 3, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Camb. Phil. Soc. 88 (1980), 89–109.

    MATH  Google Scholar 

  • J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York 1983.

    Google Scholar 

  • C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Appl. Math. Sc. 41, Springer-Verlag, New York 1982.

  • C. Sturm, Sur une classe d'équations à différences partielles, J. Math. Pure Appl. 1 (1836), 373–444.

    Google Scholar 

  • T. I. Zelenyak, Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable, Differential Equations 4, 1 (1968), 17–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Kirchgässner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiedler, B., Mallet-Paret, J. A Poincaré-Bendixson theorem for scalar reaction diffusion equations. Arch. Rational Mech. Anal. 107, 325–345 (1989). https://doi.org/10.1007/BF00251553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251553

Keywords

Navigation