# A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam

Article

- Received:

DOI: 10.1007/BF00251249

- Cite this article as:
- Holmes, P. & Marsden, J. Arch. Rational Mech. Anal. (1981) 76: 135. doi:10.1007/BF00251249

- 132 Citations
- 329 Downloads

## Abstract

This paper delineates a class of time-periodically perturbed evolution equations in a Banach space whose associated Poincaré map contains a Smale horseshoe. This implies that such systems possess periodic orbits with arbitrarily high period. The method uses techniques originally due to Melnikov and applies to systems of the form *x=f*_{o}(*X*)+*εf*_{1}(*X,t*), where *f*_{o}(*X*) is Hamiltonian and has a homoclinic orbit. We give an example from structural mechanics: sinusoidally forced vibrations of a buckled beam.

## Copyright information

© Springer-Verlag GmbH & Co 1981