Skip to main content
Log in

Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the cyanobacterium Synechococcus UTEX 625, the extent of expression of carboxysomes appeared dependent on the level of inorganic carbon (CO2+HCO sup-inf3 ) in the growth medium. In cells grown under 5% CO2 and in those bubbled with air, carboxysomes were present in low numbers (<2 · longitudinal section-1) and were distributed in an apparently random manner throughout the centroplasm. In contrast, cells grown in standing culture and those bubbled with 30 μl CO2 · 1-1 possessed many carboxysomes (>8 · longitudinal section-1). Moreover, carboxysomes in these cells were usually positioned near the cell periphery, aligned along the interface between the centroplasm and the photosynthetic thylakoids. This arrangement of carboxysomes coincided with the full induction of the HCO sup-inf3 transport system that is involved in concentrating inorganic carbon within the cells for subsequent use in photosynthesis. Immunolocalization studies indicate that the Calvin cycle enzyme ribulose bisphosphate carboxylase was predominantly carboxysome-localized, regardless of the inorganic carbon concentration of the growth medium, while phosphoribulokinase was confined to the thylakoid region. It is postulated that the peripheral arrangement of carboxysomes may provide for more efficient photosynthetic utilization of the internal inorganic carbon pool in cells from cultures where carbon resources are limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

DIC:

dissolved inorganic carbon (CO2+HCO sup-inf3 +CO sup2-inf3 )

PRK:

phosphoribulokinase

RuBP:

ribulose 1,5-bisphosphate

Rubisco LS:

large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase

References

  • Allen MM (1984) Cyanobacterial cell inclusions. Ann Rev Microbiol 38: 1–25

    Google Scholar 

  • Badger MR, Gallagher A (1987) Adaptation of photosynthetic CO2 and HCO -3 accummulation by the cyanobacterium Synechococcus PCC 6301 to growth at different inorganic carbon concentrations. Aust J Plant Physiol 14: 189–201

    Google Scholar 

  • Badger MR, Price GD (1989) Carbonic anhydrase activity associated with the cyanobacterium Synechococcus PCC7942. Plant Physiol 89: 51–60

    Google Scholar 

  • Beudeker RF, Codd GA, Kuenen JG (1981) Quantification and intracellular distribution of ribulose-1,5-bisphosphate carboxylase in Thiobacillus neapolitanus, as related to possible functions of carboxysomes. Arch Microbiol 129: 361–367

    Google Scholar 

  • Birmingham BC, Colman B (1979) Measurement of carbon dioxide compensation points of freshwater algae. Plant Physiol 64: 892–895

    Google Scholar 

  • Codd GA (1988) Carboxysomes and ribulose bisphosphate carboxylase/oxygenase. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol. 29. Academic Press, San Diego, pp 115–164

    Google Scholar 

  • Codd GA, Stewart WDP (1976) Polyhedral bodies and ribulose 1,5-diphosphate carboxylase of the blue-green alga Anabaena cylindrica. Planta 130: 323–326

    Google Scholar 

  • Coleman JR, Seemann JR, Berry JA (1982) RuBP carboxylase in carboxysomes of blue-green algae. Carnegie Inst Wash Yearbook 81: 83–87

    Google Scholar 

  • Cossar JD, Rowell P, Darling AJ, Murray S, Codd GA, Stewart WDP (1985) Localization of ribulose 1,5-bisphosphate carboxylase/oxygenase in the N2-fixing cyanobacterium Anabaena cylindrica. FEMS Microbiol Lett 28: 65–68

    Google Scholar 

  • Duke CS, Allen MM (1990) Effect of nitrogen starvation on polypeptide composition, ribulose-1,5-bisphosphate carboxylase/oxygenase, and thylakoid carotenoprotein content of Synechocystis sp. strain PCC 6308. Plant Physiol 94: 752–759

    Google Scholar 

  • Edwards MR, Berns DS, Ghiorse WC, Holt SC (1968) Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J Phycol 4: 283–298

    Google Scholar 

  • Espie GS, Canvin DT (1987) Evidence for Na+-independent HCO -3 uptake by the cyanobacterium Synechococcus leopoliensis. Plant Physiol 84: 125–130

    Google Scholar 

  • Espie GS, Kandasamy RA (1992) Na+-independent HCO -3 transport and accumulation in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 98: 560–568

    Google Scholar 

  • Espie GS, Miller AG, Canvin DT (1991) High affinity transport of CO2 in the cyanobacterium Synechococcus UTEX 625. Plant Physiol 97: 943–953

    Google Scholar 

  • Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J (1989) The 5′-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol 171: 6069–6076

    Google Scholar 

  • Gibbs SP (1968) Autoradiographic evidence for the in situ synthesis of chloroplast and mitochondrial RNA. J Cell Sci 3: 327–340

    Google Scholar 

  • Hawthornthwaite AM, Lanaras T, Codd GA (1985) Immunoelectronmicroscopic localization of Calvin cycle enzymes in Chlorogloeopsis fritschii. J Gen Microbiol 131: 2497–2500

    Google Scholar 

  • Lanaras T, Codd GA (1981a) Ribulose 1,5-bisphosphate carboxylase and polyhedral bodies of Chlorogloeopsis fritschii. Planta 153: 279–285

    Google Scholar 

  • Lanaras T, Codd GA (1981b) Structural and immunoelectrophoretic comparison of soluble and particulate ribulose bisphosphate carboxylases from the cyanobacterium Chlorogloeopsis fritschii. Arch Microbiol 130: 213–217

    Google Scholar 

  • Lanaras T, Codd GA (1982) Variations in ribulose 1,5-bisphosphate carboxylase protein levels, activities and subcellular distribution during photoautotrophic batch culture of Chlorogloeopsis fritschii. Planta 154: 284–288

    Google Scholar 

  • Lichtlé C, McKay RML, Gibbs SP (1992) Immunogold localization of photosystem I and of photosystem II light-harvesting complexes in cryptomonad thylakoids. Biol Cell 14: 181–194

    Google Scholar 

  • Mangeney E, Gibbs SP (1987) Immunocytochemical localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Eur J Cell Biol 43: 65–70

    Google Scholar 

  • Marsden WJN, Lanaras T, Codd GA (1984) Subcellular segregation of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase in the cyanobacterium Chlorogloeopsis fritschii. J Gen Microbiol 130: 2089–2093

    Google Scholar 

  • Mayo WP, Elrifi IR, Turpin DH (1989) The relationship between ribulose bisphosphate concentration, dissolved inorganic carbon (DIC) transport and DIC-limited photosynthesis in the cyanobacterium Synechococcus leopoliensis grown at different concentrations of inorganic carbon. Plant Physiol 90: 720–727

    Google Scholar 

  • McKay RML, Gibbs SP (1991) Composition and function of pyrenoids: cytochemical and immunocytochemical approaches. Can J Bot 69: 1040–1052

    Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1990) Physiological aspects of CO2 and HCO -3 transport by cyanobacteria: a review. Can J Bot 68: 1291–1302

    Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1991) The effects of inorganic carbon and oxygen upon fluorescence in the cyanobacterium Synechococcus UTEX 625. Can J Bot 69: 1151–1160

    Google Scholar 

  • Miller LS, Holt SC (1977) Effect of carbon dioxide on pigment and membrane content in Synechococcus lividus. Arch Microbiol 115: 185–198

    Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SEJr (1983) Three-dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97: 713–722

    Google Scholar 

  • Pierce J, Carlson TJ, Williams JGK (1989) A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci USA 86: 5753–5757

    Google Scholar 

  • Price GD, Badger MR (1989a) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC 7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91: 505–513

    Google Scholar 

  • Price GD, Badger MR (1989b) Isolation and characterization of high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC 7942. Plant Physiol 91: 514–525

    Google Scholar 

  • Reinhold L, Kosloff R, Kaplan A (1991) A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can J Bot 69: 984–988

    Google Scholar 

  • Reinhold L, Zviman M, Kaplan A (1989) A quantitative model for inorganic carbon fluxes and photosynthesis in cyanobacteria. Plant Physiol Biochem 27: 945–954

    Google Scholar 

  • Sherman DM, Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156: 393–401

    Google Scholar 

  • Shively JM, Ball F, Brown DH, Saunders RE (1973) Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182: 584–586

    Google Scholar 

  • Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SEJr, Strohl WR (1988) Functional inclusions in prokaryotic cells. Int Rev Cytol 113: 35–100

    Google Scholar 

  • Stewart WDP (1977) A botanical ramble among the blue-green algae. Br Phycol J 12: 89–115

    Google Scholar 

  • Swift H, Leser GP (1989) Cytochemical studies on prochlorophytes: localization of DNA and ribulose 1,5-bisphosphate carboxylase-oxygenase. J Phycol 25: 751–761

    Google Scholar 

  • Turpin DH, Miller AG, Canvin DT (1984) Carboxysome content of Synechococcus leopoliensis (Cyanophyta) in response to inorganic carbon. J Phycol 20: 249–253

    Google Scholar 

  • Wanner G, Henkelmann G, Schmidt A, Köst H-P (1986) Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301. An ultrastructural, morphometrical, and biochemical comparison. Z Naturforsch 41: 741–750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKay, R.M.L., Gibbs, S.P. & Espie, G.S. Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of Rubisco and the mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch. Microbiol. 159, 21–29 (1993). https://doi.org/10.1007/BF00244259

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00244259

Key words

Navigation