Skip to main content
Log in

Functional characterization of primary vestibular afferents in the frog

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

  1. 1.

    In order to more accurately identify the nature of the vestibular input to central neurons, the response properties of single semicircular canal and otolith units in the frog VIIIth nerve were studied in curarized preparations.

  2. 2.

    An equation describing the response plane was calculated for each canal on the basis of null point measurements. These results show that the ipsilateral canal planes are orthogonal within 2–5°, and that pairs of right-left synergists are essentially coplanar. A head position of 10–20° maxilla nose up produces optimal horizontal canal and minimal vertical canal activation with horizontal rotation.

  3. 3.

    The frequency response of the horizontal canal was examined in the range 0.025–0.5 Hz. Comparatively shorter phase-lags and a 10 fold greater acceleration gain in this frequency range distinguish the frog from the mammalian species studied.

  4. 4.

    Otolithic responses were tonic, phasic-tonic, and phasic in nature. The preponderance of the latter two groups is stressed (94%). Tonic responses were proportional to the gravitational vector change. Phasic responses were proportional to velocity during transitions in head position and phase-led displacement (30–80%) with sinusoidal acceleration in roll and pitch.

  5. 5.

    Efferent vestibular neurons respond to rotation in the horizontal (usually Type III) as well as vertical planes. Responses in the vertical planes result from canal and/or otolithic input to these neurons indicating that the vestibular efferent system receives extensive multi-labyrinthine convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashcroft, D.W., Hallpike, C.S.: On the function of the saccule. J. Laryng. 49, 450–460 (1934)

    Google Scholar 

  • Blanks, R.H.I., Estes, M.S., Markham, C.H.: The physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J. Neurophysiol. 38, 1250–1268 (1975)

    Google Scholar 

  • Buddelmann, B.-U., Wolff, H.G.: Gravity response from angular acceleration receptors in Octopus vulgaris. J. comp. Physiol. 85, 283–290 (1973)

    Google Scholar 

  • Burlet, H.M. de: Zur vergleichenden Anatomie der Labyrinthinnervation. J. comp. Neurol. 47, 155–169 (1929)

    Google Scholar 

  • Eckmiller, R., Petsch, J.: A digital instantaneous impulse rate meter for neural activity. Electroenceph. Clin. Neurophysiol. 39, 414–416 (1975)

    Google Scholar 

  • Estes, M.S., Blanks, R.H.I., Markham, C.H.: The physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J. Neurophysiol. 38, 1232–1249 (1975)

    Google Scholar 

  • Fernández, C., Goldberg, J.M.: Physiology of peripheral neurons innervating semicircular canals of the Squirrel Monkey. II. Response to Sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675 (1971)

    Google Scholar 

  • Fernández, C., Goldberg, J.M., Abend, W.K.: Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J. Neurophysiol. 35, 978–997 (1972)

    Google Scholar 

  • Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in goldfish. J. Neurophysiol. 30, 1377–1403 (1967)

    Google Scholar 

  • Gleisner, L., Hendriksson, N.G.: Efferent and afferent activity pattern in the vestibular nerve of the frog. Acta oto-laryng. (Stockh.) Suppl. 192, 58, 90–103 (1963)

    Google Scholar 

  • Goldberg, J.M., Fernández, C.: Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635–660 (1971)

    Google Scholar 

  • Goldberg, J.M., Fernández, C.: Vestibular mechanism. Ann. Rev. Physiol. 37, 129–162 (1975a)

    Google Scholar 

  • Goldberg, J.M., Fernández, C.: Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta oto-laryng. (Stockh.) (in press, 1975b)

  • Gualtierotti, T., Alltucker, D.: The relationship between the unit activity of the utricle-saccule of the frog and information transfer. The role of the vestibular organs in space exploration. Second Symposium. NASA SP-115, 143–149 (1966)

    Google Scholar 

  • Gualtierotti, T., Gerathewohl, S.J.: Spontaneous firing and responses to linear acceleration of single otolith units of the frog during short periods of weightlessness during parabolic flight. The role of vestibular organs in the exploration of space. NASA SP-77, 221–229 (1965)

    Google Scholar 

  • Hillman, D.E.: Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp. Brain Res. 9, 1–15 (1969)

    Google Scholar 

  • Hillman, D.E.: Morphology of peripheral and central vestibular system. In: Frog Neurobiology. (eds. R. Llinás, W. Precht). Berlin-Heidelberg-New York: Springer (in press, 1976)

    Google Scholar 

  • Klinke, R.: Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch. 318, 325–332 (1970)

    Google Scholar 

  • Ledoux, A.: Activite electrique des nerfs des canaux semicirculaires, du saccule et de L'utricle chez la grenouille. Acta oto-rhino-laryng. belg. 3, 335–349 (1949)

    Google Scholar 

  • Llinás, R., Precht, W.: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 9, 16–29 (1969)

    Google Scholar 

  • Llinás, R., Precht, W., Clarice, M.: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971)

    Google Scholar 

  • Loe, P.R., Tomko, D.L., Werner, G.: The neural signal of angular head position in primary afferent vestibular nerve axons. J. Physiol. (Lond.) 230, 29–50 (1973)

    Google Scholar 

  • Lowenstein, O.: Electrophysiological experiments on the isolated surviving labyrinth of elasmobranch fish to analyze the response to linear acceleration. Fourth Symposium on the role of the Vestibular Organs in Space Exploration. NASA SP-187, 161–166 (1970)

    Google Scholar 

  • Lowenstein, O., Roberts, T.D.M.: The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J. Physiol. (Lond.) 110, 392–415 (1949)

    Google Scholar 

  • Lowenstein, O., Roberts, T.D.M.: The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. (Lond.) 114, 471–489 (1951)

    Google Scholar 

  • Lowenstein, O., Sand, A.: The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J. Physiol. (Lond.) 99, 89–101 (1940a)

    Google Scholar 

  • Lowenstein, O., Sand, A.: The mechanism of the semicircular canal. A study of the responses of single-fiber preparations to angular accelerations and rotations at constant speed. Proc. roy. Soc. Biol. 129, 256–275 (1940b)

    Google Scholar 

  • Lowenstein, O., Saunders, R.D.: Otolith-controlled responses from the first-order neurons of the labyrinth of the bullfrog (Rana catesbeiana) to changes in linear acceleration. Proc. roy. Soc. B 191, 475–505 (1975)

    Google Scholar 

  • Lowenstein, O., Wersäll, J.: A functionl interpretation of the electron microscopic structure of the sensory hairs in the cristae of elasmobranch, Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807–1810 (1959)

    Google Scholar 

  • Macadar, O., Wolfe, G.E., O'Leary, D.P., Segundo, J.P.: Response of the elasmobranch utricle to maintained spatial orientation, transitions and jitter. Exp. Brain Res. 22, 1–12 (1975)

    Google Scholar 

  • McNally, W.J., Tait, J.: Some results of section of particular nerve branches to the ampullae of the four vertical semicircular canals of the frog. Quart. J. exp. Physiol. 23, 147–196 (1933)

    Google Scholar 

  • Melville Jones, G., Milsum, J.H.: Characteristics of neural transmission from the semicircular canal to the vestibular nuclei of cats. J. Physiol. (Lond.) 209, 295–316 (1970)

    Google Scholar 

  • Ozawa, S., Precht, W., Shimazu, H.: Crossed effects on central vestibular neurons in the horizontal canal system of the frog. Exp. Brain Res. 19, 394–405 (1974)

    Google Scholar 

  • Precht, W.: Physiology of the peripheral and central vestibular system. In: Frog Neurobiology. (eds. R. Llinás, W. Precht). Berlin-Heidelberg-New York: Springer (in press, 1976)

    Google Scholar 

  • Precht, W., Llinás, R., Clarke, M.: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971)

    Google Scholar 

  • Precht, W., Richter, A., Ozawa, S., Shimazu, H.: Intracellular study of frog's vestibular neurons in relation to the labyrinth and spinal cord. Exp. Brain Res. 19, 377–393 (1974)

    Google Scholar 

  • Retzius, G.: Das Gehörorgan der Fische und Amphibien. In: Das Gehörorgan der Wirbeltiere. Stockholm 1881

  • Richter, A.: Antworten der Vestibulariskern-Neurone des Frosches bei natürlicher Labyrinthreizung. (Doctoral thesis). Frankfurt: J.W. Goethe Univ. 1973

    Google Scholar 

  • Ross, D.A.: Electrical studies on the frog's labyrinth. J. Physiol. (Lond.) 86, 117–146 (1936)

    Google Scholar 

  • Schmidt, R.S.: Frog labyrinthine efferent impulses. Acta oto-laryng. (Stockh.) 56, 51–64 (1963)

    Google Scholar 

  • Schor, R.H.: Responses of cat vestibular neurons to sinusoidal roll tilt. Exp. Brain Res. 20, 347–362 (1974)

    Google Scholar 

  • Shimazu, H., Precht, W.: Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J. Neurophysiol. 28, 991–1013 (1965)

    Google Scholar 

  • Shimazu, H., Precht, W.: Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol. 29, 467–492 (1966)

    Google Scholar 

  • Shinoda, Y., Yoshida, K.: Dynamic characteristics of responses to horizontal head angular acceleration in vestibuloocular pathway in the cat. J. Neurophysiol. 37, 653–673 (1974)

    Google Scholar 

  • Tait, J., McNally, W.J.: V. Some features of the action of the utricular maculae (and of the associated action of the semicircular canals) of the frog. Phil. Trans. B 513, 224, 241–288 (1934)

    Google Scholar 

  • Vidal, J., Jeannerod, W., Lifschitz, H., Levitan, H., Rosenberg, J., Segundo, J.P.: Static and dynamic properties of gravity-sensitive receptors in the cat vestibular system. Kybernetik 9, 205–215 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanks, R.H.I., Precht, W. Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25, 369–390 (1976). https://doi.org/10.1007/BF00241728

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00241728

Key words

Navigation