Skip to main content
Log in

Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Extracellular recordings were made from moist cells, dry cells and warm cells in the tip pore sensilla of the spider tarsal organ. Stimulation consisted of a rapid shift from an adapting air stream to another one at different levels of partial pressure of water vapor or of temperature. The moist and the dry cells respond antagonistically to sudden changes in humidity. Both hygroreceptors are unusual in being excited in a synergistic manner by pungent vapors of very volatile, polar substances. Presumably, the hygrosensitivity is superimposed on basically chemosensitive receptors. A moist cell at average differential sensitivity is able to discriminate two successive upward steps in humidity when they differ by 11% relative humidity. For a single dry cell, the difference required for a correct discrimination between two downward humidity steps is 10% relative humidity. The moist and the dry cells are unique in that they occur in combination with warm cells. A single warm cell at average differential sensitivity is able to resolve differences in warming steps down to 0.4°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HR:

relative humidity

T:

temperature

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo and hygroreceptors. Annu Rev Entomol 30:273–295

    Google Scholar 

  • Becker D (1978) Elektrophysiologische Untersuchungen zur Feuchterezeption durch die styloconischen Sensillen bei Mamestra brassicae L. (Lepidoptera, Noctuidae). Theses, Universität Regensburg

  • Blumenthal H (1935) Untersuchungen über das “Tarsalorgan” der Spinnen. Z Morphol Ökol Tiere 29:667–719

    Google Scholar 

  • Braun HA, Bade H, Mensel H (1980) Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflügers Arch 386:1–9

    Google Scholar 

  • Braun HA, Schäfer K, Wissing H (1984) Theorien und Modelle zum Übertragungsverhalten thermosensitiver Rezeptoren. Funkt Biol Med 3:26–36

    Google Scholar 

  • Dumpert K (1978) Spider odor receptor: Electrophysiological proof. Experientia 34:754–755

    Google Scholar 

  • Foelix RF (1970) Chemosensitive hairs in spiders. J Morph 132:313–334

    Google Scholar 

  • Foelix RF (1992) Biologie der Spinnen. Thieme, Stuttgart

    Google Scholar 

  • Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell 5:461–478

    Google Scholar 

  • Gödde J, Haug T (1990) Analysis of the electrical responses of antennal thermo and hygroreceptors of Antheraea (Saturniidae, Lepidoptera) to thermal, mechanical, and electrical stimuli. J Comp Physiol A 167:391–401

    Google Scholar 

  • Haug T (1986) Struktur, Funktion und Projektion der antennalen Thermound Hygrorezeptoren von Antheraea pernyi (Lepidoptera: Saturniidae). Theses, Universität Regensburg

  • Hess E, Loftus R (1984) Warm and cold receptors of two sensila on the foreleg tarsi of the tropical bont tick, Amblyomma variegatum. J Comp Physiol A 155:187–195

    Google Scholar 

  • Itoh T, Yokohari F, Tominaga Y (1984) Two types of antennal hygro and thermoreceptive sensilla of the cricket, Gryllus bimaculatus (De Geer). Zool Science 1:533–543

    Google Scholar 

  • Kafka WA (1970) Molekulare Wechselwirkungen bei der Erregung einzelner Riechzellen. Z Vergl Physiol 70:105–143

    Google Scholar 

  • Loftus R (1976) Temperature-dependent dry receptor on antenna of Periplaneta. Tonic response. J Comp Physiol 111:153–170

    Google Scholar 

  • Loftus R, Corbière-Tichané G (1981) Antennal warm and cold receptors of the cave beetle, Speophyes lucidulus Delar., in sensilla with a lamellated dendrite. I. Response to sudden temperature change. J Comp Physiol 143:443–452

    Google Scholar 

  • Nishikawa M, Yokohari F, Ishibashi T (1985) The antennal thermoreceptor of the camel cricket, Tachycines asynamorus. J Insect Physiol 31:517–524

    Google Scholar 

  • Tichy H (1979) Hygroand thermoreceptive triad in antennal sensillum in the stick insect Carausius morosus. J Comp Physiol 132:149–152

    Google Scholar 

  • Tichy H (1987) Hygroreceptor identification and response characteristics in the stick insect, Carausius morosus. J Comp Physiol A 160:43–53

    Google Scholar 

  • Tichy H, Loftus R (1990) Response of moist-air receptor on the antenna of the stick insect, Carausius morosus to step changes in temperature. J Comp Physiol A 166:507–516

    Google Scholar 

  • Waldow U (1970) Elektrophysiologische Untersuchungen an Feuchte-, Trocken und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z Vergl Physiol 69:249–283

    Google Scholar 

  • Yokohari F (1978) Hygroreceptive mechanism in the antenna of the cockroach Periplaneta. J Comp Physiol 124:53–60

    Google Scholar 

  • Yokohari F (1983) The coelocapitular sensillum, an antennal hygroand thermoreceptive sensillum of the honey bee, Apis mellifera L. Cell Tissue Res 233:355–365

    CAS  PubMed  Google Scholar 

  • Yokohari F, Tateda H (1976) Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J Comp Physiol 106:137–152

    Google Scholar 

  • Yokohari F, Tominaga Y, Tateda H (1982) Antennal hygroreceptors of the honey bee, Apis mellifera L. Cell Tissue Res 226:63–73

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehn, R., Tichy, H. Hygro- and thermoreceptive tarsal organ in the spider Cupiennius salei . J Comp Physiol A 174, 345–350 (1994). https://doi.org/10.1007/BF00240216

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240216

Key words

Navigation