Skip to main content
Log in

Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An efficient genetic transformation protocol has been developed for strawberry cv. Redcoat using Agrobacterium tumefadens. The protocol relies on a high frequency (84%) shoot regeneration system from leaf disks. The leaf disks were inoculated with a non-oncogenic Agrobacterium tumefadens strain MP90 carrying a binary vector plasmid pBI121 which contains a chimeric nopaline synthase (NOS) promoter driven neomycin phosphotransferase (NPT II) gene and a cauliflower mosaic virus 35S (CaMV35S) promoter driven, ß-glucuronidase (GUS) marker gene. The inoculated leaf disks, pre-cultured for 10 days on non-selective shoot regeneration medium, formed light green meristematic regions on selection medium containing 50 μg/ml kanamycin. These meristematic regions developed into transformed shoots at a frequency of 6.5% on a second selection medium containing 25 μg/ml kanamycin. The selected shoots were multiplied on shoot proliferation medium in the presence of kanamycin. All such shoots were resistant to kanamycin and expressed varying levels of NPT II and GUS enzyme activity. Histochemical assays for GUS activity indicated that the 35S promoter was highly active in meristematic cells of shoot and root apices. Molecular analysis of each transgenic clone confirmed the integration of both marker genes into the strawberry genome. Leaf disks prepared from transformed plants, when put through the second selection cycle on kanamycin, formed callus and exhibited GUS activity. The rooted transformed plants were grown in a greenhouse for further characterization. The protocol may be useful for improvement of strawberry through gene manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boxus P, Quoirin M, Laine JM (1977) In: Rienert J, Bajaj YPS (eds) Applied and fundamental aspects of plant, cell, tissue and organ culture, Springer-Verlag, New York, pp 261–271

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bringhurst RS, Voth V (1981) In: Childers NF (ed) The strawberry, Horticultural publications, 3906 N.W. 31st place, Gainesville, Florida 32601, pp 156–164

  • Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kretzmer KK, Mayer EJ, Rochester DE, Rogers SG, and Fraley RT (1987) Bio/Technology 5:807–813

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB (1986) CRC Crit Rev Plant Sci 4:1–46

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Expt Cell Res 50:151–158

    Google Scholar 

  • Gasser CS, Fraley RT (1989) Science 244:1293–1299

    Google Scholar 

  • Hanahan D (1983) J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Hancock JF, Scott DH (1988) Fruit Var J 24:102–108

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Bio/Technology 6:915–922

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303:179–180

    CAS  Google Scholar 

  • Hoekema A, Huisman MJ, Molendijk L, Van den-Elzen PJM, Cornelissen BJC (1989) Bio/Technology 7:273–278

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann ML, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227:1229–1231

    CAS  Google Scholar 

  • James DJ (1987) Biotechnology and Genetic Engineering Reviews 5:33–79

    Google Scholar 

  • James DJ, Passey AJ, Barbara DJ, Bevan M (1989) Plant Cell Reports 7:658–661

    Google Scholar 

  • Jefferson RA (1987) Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kartha KK, Leung ML, Pahl K (1980) J Amer Soc Hort Sci 105:481–484

    Google Scholar 

  • Koncz C, Schell J (1986) Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Bio/Technology 6:923–926

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Plant Cell Reports 5:81–84

    Google Scholar 

  • McDonnell RE, Clark RD, Smith WA, Hinchee MA (1987) Plant Mol Biol Rep 5:380–386

    Google Scholar 

  • McHughen A, Jordan MC (1989) Plant Cell Reports 7:611–614

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nagata T, Okada K, Kawazu T, Takebe I (1987) Mol Gen Genet 207:242–244

    Google Scholar 

  • Nehra NS, Chibbar RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990) Plant Cell Reports 9:10–13

    Google Scholar 

  • Nehra NS, Stushnoff C, Kartha KK (1989) J Amer Soc Hort Sci 114:1014–1018

    Google Scholar 

  • Ooms G, Burrell MM, Karp A, Bevan MW, Hille J (1987) Theor Appl Genet 73:744–750

    Google Scholar 

  • Pua E, Mehra-Palta A, Nagy F, Chua N (1987) Bio/Technology 5:815–817

    Google Scholar 

  • Stiekema WJ, Heidekamp F, Louwerse JD, Verhoeven HA, Dijkhuis P (1988) Plant Cell Reports 7:47–50

    Google Scholar 

  • Takashi A, Hirano H, Naito S, Komeda Y (1989) Plant Cell Reports 8:259–262

    Google Scholar 

  • Terada R, Shimamoto K (1990) Mol Gen Genet 220:389–392

    Google Scholar 

  • Visser RGF, Jacobsen E, Hesseling-Meinders A, Schans MJ, Witholt B, Feenstra WJ (1989) Plant Mol Biol 12:329–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Constabel

NRCC No. 31491

During the editorial process, a report has appeared on transformation of strawberry (James et al. 1990 Plant Sci 69:79–94).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nehra, N.S., Chibbar, R.N., Kartha, K.K. et al. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Reports 9, 293–298 (1990). https://doi.org/10.1007/BF00232854

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232854

Keywords

Navigation