Skip to main content
Log in

Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarily, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudateputamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agid Y, Guyenet P, Glowinsky J, Beaujouan J, Javoy-Agid F (1975) Inhibitory influence of the nigrostriatal dopamine system on the striatal cholinergic neurons in the rat. Brain Res 86:488–492

    Google Scholar 

  • Andén N-E, Dahlström A, Fuxe K, Hillarp NA, Larsson K (1964) Demonstrating and mapping out of nigro-neostriatal dopamine neurons. Life Sci 3:523–530

    Google Scholar 

  • Björklund A, Lindvall O (1984) Catecholaminergic brain stem regulatory systems. In: Björklund A, Hökfelt T (eds) Handbook of chemichal neuroanathomy, Vol 2. Elsevier, New York, pp 55–122

    Google Scholar 

  • Brann MR, Emson PC (1980) Microiontophoretic injection of flouroscent tracer combined with simoltaneous immunoflouroscent histochemistry for demonstration of efferents from caudate-putamen. Neurosci Lett 16:61–65

    Google Scholar 

  • Brice A, Berrard S, Raynaud B, Ansieau S, Coppola T, Weber MJ, Mallet J (1989) Complete sequence of a cDNA encoding an active rat choline acetyltransferase: a tool to investigate the plasticity of cholinergic phenotypic expression. J Neurosci Res 23:266–273

    CAS  PubMed  Google Scholar 

  • Brownstein MJ, Mroz EA, Tappaz ML, Leeman SE (1977) On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res 135:315–323

    Google Scholar 

  • Bunzow JR, VanTol HHM, Grandy DK, Albert P, Salon J, Christie M, Machida CA, Neve KA, Civelli O (1988) Cloning and expression of a rat D2 dopamine receptor. Nature 336:783–787

    Google Scholar 

  • Chang HT (1988) Dopamine-acetylcholine interactions in the rat striatum: a dual-labeling immunocytochemichal study. Brain Res Bull 21:295–304

    Google Scholar 

  • Christenson-Nylander I, Herrera-Marschitz M, Staines W, Hökfelt T, Terenius L, Ungerstedt U, Cuello C, Oertel WH, Goldstein M (1986) Striato-nigral dynorphine and substance P pathways in the rat. I. Biochemichal and immuno-histochemichal studies. Exp Brain Res 380:34–41

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioural supersensitivity. Science 197:596–598

    Google Scholar 

  • Cuello AC, Paxinos G (1978) Evidence for a long Leu-enkephaline striopallidal pathway in rat brain. Nature 271:178–180

    Google Scholar 

  • Dahlstöm A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232:1–55

    Google Scholar 

  • Dal Toso R, Sommer B, Ewert M, Herb A, Pritchet DB, Bach A, Shivers B, Seeburg PH (1989) The dopamine D2 receptor: two molecular forms generated by alternative spxlicing. EMBO 8:4025–4039

    Google Scholar 

  • Del Fiacco M, Paxinos G, Cuello AC (1982) Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus. Brain Res 231:1–17

    Google Scholar 

  • DiFiglia M, Aronin N, Leeman SE (1981) Immunoreactive substance P in the substantia nigra of the monkey: light and electron microscopic lokalization. Brain Res 233:381–388

    Google Scholar 

  • DiFiglia M, Aronin N, Martin JB (1982) Light and electron microscopic localization of immunoreactive leuenkephaline in the monkey basal ganglia. J Neurosci 2:303–320

    Google Scholar 

  • DiFiglia M, Aronin N (1982) Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J Neurosci 2:1267–1274

    Google Scholar 

  • Fibiger HC (1982) The organisation and some projections of cholinergic neurons of the mamalian forebrain. Brain Res Rev 4:327–388

    Google Scholar 

  • Fonnum F, Gottesfeld Z, Grofova I (1978) Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rat: evidence for striatopallidal, striatoentopeduncular and striatonigral GABAergic fibers. Brain Res 143:125–138

    Google Scholar 

  • Gerlach J (1985) Pathophysiological mechanisms underlying tardive dyskinesia. In: Casey DE, Christensen AV, Gerlach J (eds) Dyskinesia research and treatment. Psychopharmacology Suppl 2:98–103

  • Giros B, Sokloff P, Martress M-P, Riou J-F, Emorine LJ, Schwartz J-C (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–926

    Google Scholar 

  • Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC, Civelli O (1989) Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc Acad Sci USA 86:9762–9766

    Google Scholar 

  • Groves PM, Synaptic endings and their postsynaptic targets in neostriatum: synaptic specializations revealed from analysis of serial sections. Proc Natl Acad Sci USA 77:6926–6929

  • Hattori T, Singh VK, McGeer EG, McGeer PL (1976) Immunohistochemichal localization of choline acetyltransferase containing striatal neurons and their relationship with dopaminergic synapses. Brain Res 102:164–173

    Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984a) Evidence that striatal efferents relate to different dopamine receptors. Brain Res 323:269–278

    Google Scholar 

  • Herrera-Marschitz M, Ungerstedt U (1984b) Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D2 receptor sites. Eur J Pharmacol 98:165–176

    Google Scholar 

  • Hong JS, Yang HY, Racagni G, Costa E (1977) projections of substance P containing neurons from neostriatum to substantia nigra. Brain Res 122:541–544

    Google Scholar 

  • Jessel TM, Emson PC, Paxinos G, Cuello AC (1978) Topographic projections of substance P and GABA pathways in the striatopallido-nigral system: a biochemical and immunohistochemical study. Brain Res 152:487–498

    Google Scholar 

  • Joyce JN, Marshall JF (1985) Striatal topography of D2 receptors correlates with indexes of cholinergic neuron localization. Neurosci Lett 53:127–131

    Google Scholar 

  • Kanazawa I, Emson PC, Cuello C (1977) Evidense for existence of substance P containing fibers in striato-nigral and pallido-nigral pathways in rat brain. Brain Res 119:447–453

    Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96

    Google Scholar 

  • Kemp JM, Powell TPS (1971) The structure of caudate nucleus of the cat: light and electron microscopy. Phil Trans R Soc Ser B 262:383–401

    Google Scholar 

  • Kim JS, Bak IJ, Hassler R, Okada Y (1971) Role of γ-amino butyric acid (GABA) in the extrapyramidal motor system: some evidence for the existence of a type of GABA-rich striato-nigral neurons. Exp Brain Res 14:95–104

    Google Scholar 

  • Laihinen A, Rinne UK (1986) Function of dopamine response in Parkinsons disease: prolactin responses. Neurology 36:393–395

    Google Scholar 

  • Lehmann L, Langer SZ (1983) The striatal cholinergic interneuron: synaptic target of dopaminergic terminals. Neuroscience 10:1105–1120

    Google Scholar 

  • Le Moine C, Normand E, Guitteny AF, Fouque B, Teolle R, Bloch B (1989) Dopamine receptor gene expression by enkephaline neurons in rat forebrain. Proc Acad Sci USA 87:230–234

    Google Scholar 

  • Lindefors N, Brodin E, Ungerstedt U (1986) Neurokinin A and substance P in striato-nigral neurons in rat brain. Neuropeptides 8:127–132

    Google Scholar 

  • Lindefors N, Brené S, Herrera-Marschitz M, Persson H (1989) Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain. Exp Brain Res 77:611–620

    Google Scholar 

  • Lindefors N, Brené S, Herrera-Marschitz M, Persson H (1990) Neuropeptide gene expression in brain is differentially regulated by midbrain dopamine neurons. Exp Brain Res 80:489–500

    Google Scholar 

  • McGeer PL, McGeer EG, Fibiger HG, Vicksin V (1971) Neostriatal choline acetyltransferase following selective brain lesions. Brain Res 35:308–314

    Google Scholar 

  • Meandor-Woodruff JH, Mansour A, Bunzow JR, Van Tol HHM, Watson S, Civelli O (1989) Distribution of D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci USA 83:7625–7628

    Google Scholar 

  • Mengod G, Martinez-Mir MI, Vilario MT, Palacios JM (1989) Localization of the mRNA for the dopamine D2 receptor in the rat brain by in situ hybridization histochemistry. Proc Acad Sci USA 86:8560–8564

    Google Scholar 

  • Mishra RK, Marshall AM, Varmuza SL (1980) Supersensitivity in rat caudate nucleus: effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes. Brain Res 200:47–57

    Google Scholar 

  • Monsma Jr FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    Google Scholar 

  • Nagai T, McGeer PL McGeer HC (1983) Distribution of GABA-T-intensive neurons in the rat forbrain and midbrain. J Comp Neurol 218:220–238

    Google Scholar 

  • Nagy JI, Carter DA, Fibiger HC (1978) Anterior striatal projections to globus pallidus, entopeduncular nucleus and substantia nigra in the rat: the GABA connection. Brain Res 158:25–29

    Google Scholar 

  • Nagy JI, Fibiger HC (1978) A striatal source of glutamic acid decarboxylase in the substantia nigra. Brain Res 35:237–242

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in sterotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Pickel VM, Beckley S, Joh TH, Reis DJ (1981) Ultrastructural immunocytochemichal localization of tyrosine hydroxylase in the neostriatum. Brain Res 225:373–385

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Staines A, Atmadja S, Fibiger HC (1983) Ultrastructural observations of the cholinergic neuron in the rat striatum as identified by acetylcholinesterase pharmacohistochemistry. Neuroscience 10:1121–1136

    Google Scholar 

  • Ungerstedt U (1971a) Stereotaxic mapping of the monoamine pathwayss in the rat brain. Acta Physiol Scand Suppl 367:1–48

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971b) Postsynaptic Supersensitivity after 6-hydroxydopamine induced degeneration of nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    CAS  PubMed  Google Scholar 

  • Young III WS, Bonner TI, Brann MR (1986) Mescencephalic dopamine neurons regulate the expression of neuropeptide mRNA in the rat forebrain. Proc Acad Sci USA 83:9827–9831

    Google Scholar 

  • Vernier P, Julien J-F, Rataboul, P, Fourrier O, Feuerstein C, Mallet J (1988) Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. J Neurochem 51:1375–1380

    Google Scholar 

  • Vincent SR, Hökfelt T, Christensson I, Terrenius L (1982a) Immunohistochemichal evidence for a dynorphine immunoreactive striato-nigral pathway. Eur J Pharmacol 85:251–252

    Google Scholar 

  • Vincent SR, Skirboll L, Hökfelt T, Johansson O, Lundberg JM, Elde RP, Terrenius L, Kimmel J (1982b) Coexistence of somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivity in some forebrain neurons. Neuroscience 7:439–446

    Google Scholar 

  • Weiner DM, Brann MR (1989) The distribution of a dopamine D2 receptor mRNA in rat brain. FEBS Lett 253:207–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brené, S., Lindefors, N., Herrera-Marschitz, M. et al. Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen. Exp Brain Res 83, 96–104 (1990). https://doi.org/10.1007/BF00232197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232197

Key words

Navigation