Skip to main content
Log in

Electron microscopic visualisation of the 5S rRNA-YL3 complex from Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The complex comprising 5S ribosomal RNA and the ribosomal protein YL3 (5S rRNP) was isolated from yeast (Saccharomyces cerevisiae), and positively contrasted preparations were imaged by transmission electron microscopy. The overall dimensions of the 5S rRNP complex in the micrographs were 10 nm by 6 min. Three predominant projections were selected from several hundred putative particles for digitisation and computer averaging to yield two-dimensional constructions with reproducible spatial resolutions exceeding 2 run. The enhanced projection images were compatible with structural models of this complex based on biochemical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blobel G: Isolation of a 5S RNA-protein complex from mammalian ribosomes. Proc Nat Acad Sci USA 68: 1881–1885, 1971

    Google Scholar 

  2. Horne JR, Erdmann VA: Isolation and characterization of 5S RNA-protein complexes from Bacillus stearothermophilus and Escherichia coli ribosomes. Molec Gen Genet 119: 337–344, 1972

    Google Scholar 

  3. Monier R: 5S RNA. In: M Nomura, A Tissières, P. Lengyel (eds.), Ribosomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1974, pp 141–168

    Google Scholar 

  4. Erdmann VA: Structure and function of 5S and 5.8S RNA. Prog Nucleic Acid Res Mol Biol 18: 45–90, 1976

    Google Scholar 

  5. Smith N, Matheson AT, Yaguchi M, Willick GE, Nazar RN: The 5S RNA-protein complex from an extreme halophile, Halobacterium cutirubrum. Eur J Biochem 89: 501–509, 1978

    Google Scholar 

  6. Nazar RN, Willick GE, Matheson AT: The 5S RNA-protein complex from an extreme halophile, Halobacterium cutirubrum. J. Biol Chem 254: 1506–1512, 1979

    Google Scholar 

  7. Yu RST, Wittmann H-G: The sequence of steps in the attachment of 5S RNA to cores of Escherichia coli ribosomes. Biochim Biophys Acta 324: 375–385, 1973

    Google Scholar 

  8. Lebleu B, Marbaix G, Huez G, Temmerman J, Burny A, Chantrenne H: Characterization of the messenger ribonucleoprotein released from reticulocyte polyribosomes by EDTA treatment. Eur J Biochem 19: 264–269, 1971

    Google Scholar 

  9. Terao K, Takahashi Y, Ogata K: Differences between the protein moieties of active subunits and EDTA-treated subunits of rat liver ribosomes with specific references to a 5S RNA-protein complex. Biochim Biophys Acta 402: 230–237, 1975

    Google Scholar 

  10. Nazar RN: The ribosomal protein binding site in Saccharomyces cerevisiae ribosomal 5S RNA.J Biol Chem 254: 7724–7729, 1979

    Google Scholar 

  11. Hayes F, Guérin MF: 5S RNA-protein complexes released by EDTA treatment of 60S ribosomal subunits of Tetrahymena thermophila. Biochimie 69: 975–982, 1987

    Google Scholar 

  12. Michaeli S, Agabian N: A Trypanosoma brucei small RNP particle containing the 5S rRNA. Mol Biochem Parasitol 41: 7–16, 1990

    Google Scholar 

  13. Tang B, Nazar RN: Structure of the yeast ribosomal 5S RNAbinding protein YL3. J Biol Chem 266: 6120–6123, 1991

    Google Scholar 

  14. Yaguchi M, Rollin CF, Roy C, Nazar RN: The 5S RNA binding protein from yeast (Saccharomyces cerevisiae) ribosomes. Eur J Biochem 139: 451–457, 1984

    Google Scholar 

  15. Nazar RN, Yaguchi M, Willick GE: The 5S RNA-protein complex from yeast: a model for the evolution and structure of the eukaryotic ribosome. Can J Biochem 60: 490–496, 1982

    Google Scholar 

  16. Steitz JA, Berg C, Hendrick JP, La Branche-Chabot H, Metspalu A, Rinke J, Yario T: A 5S rRNA/L5 complex is a precursor to ribosome assembly in mammalian cells. J Cell Biol 106: 545–556, 1988

    Google Scholar 

  17. Knight E, Darnell JE: Distribution of 5S RNA in HeLa cells. J Mol Biol 28: 491–502, 1967

    Google Scholar 

  18. Christiansen J, Garrett RA: How do protein L18 and 5S RNA interact? In: B Hardesty, G. Kramer (eds.) Structure, Function, and Genetics of Ribosomes. Springer-Verlag, New York, 1986, pp 253–269

    Google Scholar 

  19. McDougall J, Nazar RN: Tertiary structure of the eukaryotic ribosomal 5S RNA. J Biol Chem 258: 5256–5259, 1983

    Google Scholar 

  20. Nazar RN: Higher order structure of the ribosomal 5S RNA. J Biol Chem 266: 4562–4567, 1991

    Google Scholar 

  21. Toraño A, Sandoval A, Heredia CF: Soluble protein factors and ribosomal subunits from yeast. Meth Enzymol 30: 254–261, 1974

    Google Scholar 

  22. Laemmli V: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    PubMed  Google Scholar 

  23. Nazar RN, Yaguchi M, Willick GE, Rollin CF, Roy C: The 5S RNA binding protein from yeast (Saccharomyces cerevisiae) ribosomes. Eur J Biochem 102: 373–382, 1979

    Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989

    Google Scholar 

  25. Whiting RF, Ottensmeyer FP: Heavy atoms in model compounds and nucleic acids imaged by dark field transmission electron microscopy. J Mol Biol 67: 173–181, 1972

    Google Scholar 

  26. van Heel M, Keegstra W: IMAGIC: A fast, flexible and friendly image analysis software system. Ultramicroscopy 7: 113–130, 1981

    Google Scholar 

  27. Harauz G, Boekema E, van Heel M: Statistical image analysis of electron micrographs of'ribosomal subunits. Meth Enzymol 164: 35–49, 1988

    Google Scholar 

  28. Harauz G, Boekema E: 1991. Processing and analysis of electron images of biological macromolecules. In: D Häder (ed.), Image Analysis in Biology, CRC Press, Boca Raton, Fl., pp 195–218

    Google Scholar 

  29. Harauz G, Stöffler-Meilicke M, van Heel M: Characteristic views of prokaryotic 50S ribosomal subunits. J Mol Evol 26: 347–357, 1987

    Google Scholar 

  30. Harauz G, Flannigan D: Characteristic electron microscopical projections of the small ribosomal subunit from Thermomyces lanuginosus. Biochim Biophys Acta 1130: 289–296, 1992

    Google Scholar 

  31. Sass JP, Büldt G, Beckmann E, Zemlin F, van Heel M, Zeitler E, Rosenbusch JP, Dorset DL, Massalski A: Densely packed β-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy. J Mol Biol 209: 171–175, 1989

    Google Scholar 

  32. Hayat MA: Positive Staining for Electron Microscopy. Van Nostrand Reinhold Co., New York, New York, 1975, pp 33–44

    Google Scholar 

  33. Hayat MA, Miller SE: Negative staining. McGraw-Hill, New York, New York, 1990, pp 4, 9–10, 43–45

    Google Scholar 

  34. Boekema EJ, van Heel M, Gräber P: Structure of the ATP synthase from chloroplasts studied by electron microscopy and image processing. Biochimica et Biophysica Acta 933: 365–371, 1988

    Google Scholar 

  35. Bazett-Jones DP: Phosphorus imaging of the 7S ribonucleoprotein particle. J Ultrastruct Mol Struct Res 99: 59–69, 1988

    Google Scholar 

  36. Brown RS, Ferguson C, Kingswell A, Winkler FK, Leonard K: Electron microscopic study of crystals of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex. Proc Natl Acad Sci USA 85: 3802–3804, 1988

    Google Scholar 

  37. Kastner B, Luhrmann R: Electron microscopy of Ul small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus. EMBO J 8: 227–286, 1989

    Google Scholar 

  38. Kastner B, Bach M, Luhrmann R: Electron microscopy of small nuclear ribonucleoprotein (snRNP) particles U2 and U5: Evidence for a common structure-determining principle in the major U snRNP family. Proc Natl Acad Sci USA 87: 1710–1714, 1990

    Google Scholar 

  39. Ottensmeyer FP, Bazett-Jones DP, Henkelman RM, Korn AP, Whiting RF: The imaging of atoms: its application to the structure determination of biological macromolecules. Chemica Scripta 14: 257–262, 1978–79

    Google Scholar 

  40. Feunteun J, Monier R, Garrett RA, Le Bret M, Le Pecq JB: Effect of 50S subunit proteins L5, L18, and L25 on the fluorescence of 5S RNA-bound ethidium bromide. J Mol Biol 93: 535–541, 1975

    Google Scholar 

  41. McDougall J, Nazar RN: Accessibility of phophodiester bonds in the yeast ribosomal 5S RNA protein complex. FEBS Lett 209: 52–56, 1986

    Google Scholar 

  42. Müller JJ, Zalkova TN, Zirwer D, Misselwitz R, Gast K, Serdyuk IN, Welfle H, Damaschun G: Comparison of structure of ribosomal 5S rRNA from E. coil and from rat liver using X-ray scattering and dynamic light scattering. Eur Biophys J 13: 301–307, 1986

    Google Scholar 

  43. Brunei C, Romby P, Westhof E, Ehresmann C, Ehresmann B: Three-dimensional model of Escherichia coli ribosomal 5S rRNA as deduced from structure probing in solution and computer modeling. J Mol Biol 221: 293–308, 1991

    Google Scholar 

  44. Nagano K, Harel M, Takezawa M: Prediction of three-dimensional structure of Escherichia coli ribosomal RNA. J Theor Biol 134: 199–256, 1988

    Google Scholar 

  45. Verschoor A, Frank J: Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol 214: 737–749, 1990

    Google Scholar 

  46. Brow DA, Geiduschek P: Modulation of yeast 5S rRNA synthesis in vitro by ribosomal protein YL3. J Biol Chem 262: 13953–13958, 1987

    Google Scholar 

  47. Lorenz S, Betzel C, Raderschall E, Dauter Z, Wilson KS, Erdmann VA: Crystallization and preliminary diffraction studies of 5S rRNA from the thermophilic bacterium Thermus flavus. J Mol Biol 219: 399–402, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyle, K.M., Harauz, G. Electron microscopic visualisation of the 5S rRNA-YL3 complex from Saccharomyces cerevisiae . Mol Cell Biochem 117, 11–21 (1992). https://doi.org/10.1007/BF00230406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230406

Key words

Navigation