Skip to main content
Log in

Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Characteristic vibrational signals are suggested to be exchanged between the sexes during the spawning behavior in the himé salmon (landlocked red salmon, Oncorhynchus nerka). To check whether the lateral line is used to detect and process these vibrational signals, we examined how Co2+, which is known to block the mechano-electrical transduction in the lateral line detector, affects both the spawning behavior and lateral line response of the male himé salmon. The results showed that Co2+ blocked both the spawning behavior towards the vibrating model (Fig. 2) and the lateral line response to the vibrational stimuli (Figs. 5, 6), if the fish were forced to swim in the water containing 1.0 mM Co2+ for 1 to 1.5 h or longer in the presence of 0.25 mM Ca2+. 0.1 mM Co2+ had similar but weaker effects. These results indicate that the vibrational signals from the vibrating model are detected and processed by the lateral line system to elicit the spawning behavior. These are the first experimental evidences that the lateral line sense is involved in the communicational behavior of the fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Latif H, Hassan ES, Campenhausen C von (1990) Sensory performance of blind Mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239

    Google Scholar 

  • Baumann M, Roth A (1986) The Ca++ permeability of the apical membrane in neuromast hair cells. J Comp Physiol A 158:681–688

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol 140:163–172

    Google Scholar 

  • Bleckmann H (1986) Role of the lateral line in fish behaviour. In: Pitcher TJ (ed) The behaviour of teleost fishes. Croom Helm, London Sydney, pp 177–202

    Google Scholar 

  • Bleckmann H (1988) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 619–641

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Natur-wissenschaften 68:624–625

    Google Scholar 

  • Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 409–419

    Google Scholar 

  • Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 299–319

    Google Scholar 

  • Coombs S, Janssen J, Webb JC (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Google Scholar 

  • Dijkgraaf S (1962) The functioning and significance of the lateralline organs. Biol Rev 38:51–105

    Google Scholar 

  • Elepfandt A (1989) Wave analysis by amphibians. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 527–541

    Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 575–587

    Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Handbook of sensory physiology, vol I. Springer, Berlin Heidelberg New York, pp 396–441

    Google Scholar 

  • Görner P, Mohr C (1989) Stimulus localization in Xenopus: role of directional sensitivity of lateral line stitches. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 543–560

    Google Scholar 

  • Harris GG, Van Bergeijk WA (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 218–227

    Google Scholar 

  • Hassan El-S, Abdel-Latif H, Biebricher R (1992) Studies on the effects of Ca++ and Co++ on the swimming behavior of the blind Mexican cave fish. J Comp Physiol A 171:413–419

    Google Scholar 

  • Himstedt W, Kopp J, Schmidt W (1982) Electroreception guides feeding behaviour in amphibians. Naturwissenschaften 69:552

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 187–215

    Google Scholar 

  • Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–262

    Google Scholar 

  • Kaus S, Schwartz E (1986) Die Reaktion von jungen Kampffischen (Betta splendens) auf Oberflächenwellen des Wassers. Verh Dtsch Zool Ges 79:218–219

    Google Scholar 

  • Keenleyside MHA (1979) Diversity and adaptation in fish behaviour. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration- sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    Google Scholar 

  • Kroese ABA, Van der Zalm JM, Van den Bercken J (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pflügers Arch 375:167–175

    Google Scholar 

  • Landau LD, Lifshitz EM (1963) Fluid dynamics. Pergamon, Oxford

    Google Scholar 

  • Montgomery JC (1989) Lateral line detection of planktonic prey. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 561–574

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarcotherodon niloticus L. J Comp Physiol A 157:555–568

    Google Scholar 

  • Münz H, Claas B, Fritzsch B (1984) Electroreceptive and mechanoreceptive units in the lateral line of the axolotl Ambystoma mexicanum. J Comp Physiol A 154:33–44

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line — Neurobiology and evolution. Springer, New York, pp 17–78

    Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis offish schools: relative roles of lateral line and vision. J Comp Physiol 135:315–325

    Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194:963–965

    Google Scholar 

  • Sand O (1975) Effects of different ionic environments on the mechano-sensitivity of lateral line organs in the mudpuppy. J Comp Physiol 102:27–42

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 459–478

    Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204

    Google Scholar 

  • Satou M (1987) A neuroethological study of reproductive behavior in the salmon. Proc 3rd Int Symp Reprod Physiol Fish, pp 154–159

  • Satou M, Shiraishi A, Matsushima T, Okumoto N (1991a) Vibrational communication during spawning behavior in the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 168:417–428

    Google Scholar 

  • Satou M, Takeuchi H-A, Kitamura S, Kudo Y, Nishii J, Tanabe M (1991b) Involvement of lateral line sense in intersexual vibrational communication during spawning behavior in the himé salmon (landlocked red salmon, Oncorhynchus nerka). Neurosci Res Suppl 14:15

    Google Scholar 

  • Satou M, Takeuchi H-A, Nishii J, Tanabe M, Kitamura S, Kudo Y, Okumoto N (1991 c) Inter-sexual vibrational communication during spawning behaviour in the himé salmon (landlocked red salmon, Oncorhynchus nerka). Proc 4th Int Symp Reprod Physiol Fish, pp 185–187

  • Satou M, Takeuchi H-A, Takei K, Hasegawa T, Matsushima T, Okumoto N (1994) Characterization of vibrational and visual signals which elicit spawning behavior in the male himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 174:527–537

    Google Scholar 

  • Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol 74:64–80

    Google Scholar 

  • Schwartz E (1974) Lateral-line mechano-receptors in fishes and amphibians. In: Fessard A (ed) Handbook of sensory physiology, vol III/3. Springer, Berlin Heidelberg New York, pp 257–278

    Google Scholar 

  • Takeuchi H-A, Namba H (1989) Feeding behavior and lateral line system in axolotl, Ambystoma mexicanum. Zool Sci 6:1216

    Google Scholar 

  • Takeuchi H-A, Namba H (1990) Feeding behavior and lateral line system in axolotl, Ambystoma mexicanum, II. Effects of blocking the mechanosensory lateral line system by cobalt ions. Zool Sci 7:1177

    Google Scholar 

  • Takeuchi H, Takei K, Satou M, Matsushima T, Okumoto N, Ueda K (1987) Visual cues as key stimuli for courtship behaviour in the male himé salmon (landlocked red salmon, Oncorhynchus nerka). Anim Behav 35:936–939

    Google Scholar 

  • Takeuchi H-A, Namba H, Nagai T (1990) Involvement of mechanosensory lateral line system in feeding behavior of the axolotl. Soc Neurosci Abstr 16:920

    Google Scholar 

  • Takeuchi H-A, Nakamura S, Nagai T (1991a) Feeding behavior of the eyeless mutant in the axolotl, Ambystoma mexicanum. Zool Sci 8:1190

    Google Scholar 

  • Takeuchi H-A, Nakamura S, Nahai T (1991b) Participation of visual and lateral line systems in the feeding behavior of the axolotl. Comp Physiol Biochem 8:146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satou, M., Takeuchi, HA., Nishii, J. et al. Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Physiol A 174, 539–549 (1994). https://doi.org/10.1007/BF00217373

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217373

Key words

Navigation