Skip to main content
Log in

The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Experimental investigations on pyrite synthesis indicate that before pyrite can be produced by a reaction involving ferrous iron, the disulphide ion must be formed; in experiments described the ion was obtained by the action of H2S in aqueous solution on elemental sulphur. Conditions under which the experiments were conducted indicate that pyrite will not form above pH 6.0. The reaction to produce pyrite is fastest when oxygen is excluded and elemental sulphur is produced from the oxidation of H2S by ferric iron. A reaction between FeS and elemental sulphur will yield pyrite at a much slower rate, although the same basic reaction is involved. An attempt has been made to relate the occurrence of pyrite in different sedimentary environments to this basic chemistry.

Zusammenfassung

Wie Versuche zeigen, ist die Voraussetzung der Pyrit-Bildung das Vorliegen von S 2−2 -Ionen, die dann mit FeII reagieren. Die S 2−2 -Ionen wurden durch Einwirken einer verdünnten H2S-Lösung auf elementaren Schwefel erhalten. Pyrite entstehen in diesen Experimenten somit nur unterhalb pH 6. Pyrit erhält man am schnellsten, wenn Sauerstoff abwesend ist und der H2S durch FeIII oxidiert wird. Die Umsetzung von FeS mit elementarem Schwefel liefert Pyrit wesentlich langsamer, wenn auch die zugrunde liegenden Reaktionen sich entsprechen. Es wird versucht, sedimentäre Pyrit-Vorkommen entsprechend diesen Reaktionsabläufen zu deuten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, E. T., J. L. Crenshaw, and J. Johnston: The mineral sulphides of iron. Am. J. Sci. 33, 169–236 (1912).

    Google Scholar 

  • Bates, T. F., and E. O. Strahl: Mineralogy, petrography, and radioactivity of representative layers of Chattanooga Shale. Bull. Geol. Soc. Am. 68, 1305–1314 (1957).

    Google Scholar 

  • Berner, R. A.: Distribution and diagenesis of sulphur in some sediments from the Gulf of California. Marine Geol. I, 117–140 (1964).

    Google Scholar 

  • — Iron sulphides formed from aqueous solution at low temperatures and atmospheric pressure. J. Geol. 72, 293–306 (1964).

    Google Scholar 

  • —: Diagenesis of iron sulphide in Recent marine sediments. Am. Assoc. Advan. Sci. Publ., “Estuaries”, 268–272 (1967).

    Google Scholar 

  • Conant, L. C., and V. E. Swanson: Chattanooga Shale and related rocks of Central Tennessee and nearby areas. U. S. Geol. Surv. Paper. 357 (1961).

  • Deans, T.: The Kupferschiefer and associated lead-zinc mineralization in the Permian and Silesia, Germany, and England. Int. Geol. Cong. XVIII Session report Part VII, 340–352 (1950).

  • Doelter, C.: Über die künstliche Darstellung einiger Mineralien aus der Gruppe der Sulfide und Sulfosalze. Krist. 11, 29–41 (1886)

    Google Scholar 

  • Dunham, K.: Black Shale, oil, and sulphide ore. Advan. Sci. XVIII, 284–299 (1961).

    Google Scholar 

  • Emery, K. O., and S. C. Rittenberg: Early diagenesis of California Basin sediments in relation to the origin of oil. Bull. Am. Assoc. Petrol. Geologists 36, 735–806 (1952).

    Google Scholar 

  • Hersch, P.: Galvanic oxygen recorder Part I. Instr. Pract. II, 817–823 (1957).

    Google Scholar 

  • —: Galvanic oxygen recorder Part II. Instr. Pract. II, 937–941 (1957).

    Google Scholar 

  • Hirst, D. M., and K. L. Dunham: Chemistry and petrography of the Marl Slate of S. E. Durham, England. Econ. Geol. 58, 912–940 (1963).

    Google Scholar 

  • Kaplan, I. R., K. O. Emery, and S. C. Rittenberg: The distribution and isotopic abundance of sulphur in Recent marine sediments of Southern California. Geochim. Cosmochim. Acta. 27, 297–331 (1963).

    Google Scholar 

  • Mellor, J. W.: A comprehensive treatise on inorganic and theoretical chemistry. XIV 892 pp. London: Longmans Green and Co. 1957.

    Google Scholar 

  • Neev, D., and K. O. Emery: The Dead Sea, depositional processes and environments of evaporites. State Israel Geol. Surv. Bull. 41, (1967).

  • Oppenheimer, C. H.: Bacterial activity in sediments of shallow marine bays. Geochim. Cosmochim. Acta 19, 244–260 (1960).

    Google Scholar 

  • Partington, J. R.: Textbook of inorganic chemistry, 1062 pp. London: MacMillan and Co. Ltd. 1946.

    Google Scholar 

  • Regnéll, U.: On pyrite in deep sediments. Bull. Geol. Inst. Univ. Uppsala 40, 305–314 (1961).

    Google Scholar 

  • de Senarmont, H.: Expériences sur la formation des minéraux par oie humide dans les gîtes métallifères concrétionnes. Compt. rend. 22, 409 (1851)

    Google Scholar 

  • Strahl, F. O.: An investigation into the mineralogy and petrography of uranium-bearing shales. U. S. At. Energy Comm. Rep. N. Y. O., 7908 (1958).

  • Van Straaten, L. M. J. U.: Composition and structure of Recent marine sediments in the Netherlands. Leidse Geol. Mededel. 19, 1–108 (1954).

    Google Scholar 

  • Volkov, I. I.: Iron sulphides, their interdependence and transformation in the Black Sea bottom sediments. Tr. Inst. Okeanol. Akad. Nauk. SSSR. 50, 68–92 (1961).

    Google Scholar 

  • Walker, A. L.: Unpublished work (1968).

  • Walton, J. H., and L. B. Parsons: The preparation and properties of the persulphides of hydrogen. J. Am. Chem. Soc. 43, 2539–2548 (1921).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, W.M.B., Walker, A.L. & Buchanan, A.S. The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment. Mineral. Deposita 4, 18–29 (1969). https://doi.org/10.1007/BF00206645

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206645

Keywords

Navigation