Skip to main content
Log in

The genesis of sediment-hosted, exhalative zinc + lead deposits

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Large sediment-hosted lead+zinc deposits like Mount Isa, McArthur River, Navan, Rammelsberg and Sullivan form a distinctive group characterised by stratiform, syngenetic sulphide ores that formed in local basins on the sea floor as a result of protracted hydrothermal activity accompanying continental rifting. Generally there is a development of a sedimentary pre-ore phase mineralization often featuring manganese followed by zinc±lead, iron and chert. Lower main phase zinc+lead lenses are usually almost devoid of copper but Cu tenors increase toward the middle or top of the ore sequences. Hanging wall trace element haloes are common. These characteristics are accounted for by deriving the ore solutions from subsurface convective circulation of modified highly saline seawater. The circulation is initiated during rifting and driven by a high geothermal gradient. As a result of continued extensional strain and cooling of the rock column the brittle-to-ductile transition zone is depressed and the circulation penetrates to greater depth with time. Of the ore metals the downward-penetrating convection fluids first leach and transport zinc and lead, but with increasing temperature are later able to leach and transport some copper. Unless convective circulation ceases the metal sequence generally reverses as the cooling phase sets in. The minimum distance separating major coeval orebodies of this type is 18 km which is a function of the size of the convective systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson C A (1969) Massive sulphide deposits and volcanism. Econ Geol 64: 129–146

    Google Scholar 

  • Anger G, Nielsen H, Puchelt M, Ricke W (1966) Sulphur isotopes in the Rammelsberg ore deposit (Germany). Econ Geol 61: 511–536

    Google Scholar 

  • Bamford D et al (1977) LISPB - III. Upper crustal structure of northern Britain. J Geol Soc Lond 133: 481–488

    Google Scholar 

  • Boast A M, Coleman M L, Halls C: Textural and stable isotopic evidence for the genesis of the Tynagh base metal deposit, Ireland. Econ Geol 76: (in press)

  • Bodvarsson G, Lowell R P (1972) Oceanfloor heat flow and the circulation of interstitial waters. J Geophys Res 77: 4472–4475

    Google Scholar 

  • Brown A C (1978) Stratiform copper deposits - evidence for their post-sedimentary origin. Minerals Sci Engng 10: 172–181

    Google Scholar 

  • Brown A G (1979) The Navan (Tara) deposits. In: Brown A G (ed) Excursion Handbook, Prospecting in Areas of Glaciated Terrain, Ireland, p 25–33. Ireland: Irish Assoc Econ Geol

    Google Scholar 

  • Burton C (1979) Authigenic feldspars associated with layered zinc mineralization in the Tynagh and Navan leadzinc deposits (abstract only). J Geol Soc Lond 136: 512

    Google Scholar 

  • Bush A (1980a) The chemistry of stock-work mineralization at Mineral Hill, N. S. W. (abstract only). 4th Australian Geological Convention, Hobart, Geol Soc Austr 51

  • - (1980b) The formation of volcanic-hosted massive-sulphide mineralization at Mineral Hill, New South Wales. Unpublished Ph. D. thesis, University of Tasmania

  • Campbell F A, Ethier V G, Krouse H R, Both R A (1978) Isotopic composition of sulphur in the Sullivan orebody, British Columbia. Econ Geol 73: 246–268

    Google Scholar 

  • Carr G R, Smith J W (1977) A comparative isotopic study of the Lady Loretta zinc-lead-silver deposit. Mineral Deposita 12: 105–110

    Google Scholar 

  • Carslaw M S, Jaeger J C (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  • Coomer P G, Robinson B W (1976) Sulphur and sulphate-oxygen isotopes and the origin of the Silvermines deposits, Ireland. Mineral Deposita 11: 155–169

    Google Scholar 

  • Cotton R E (1965) H. Y. C. lead-zinc-silver ore deposit, McArthur River. In: McAndrew A (ed) Geology of Australian ore deposits, Vol 1, 197–200. Melbourne: Proc 8th Empire Min. and Metall. Congr.

  • Croxford N J W (1964) Origin and significance of volcanic potash rich rocks from Mount Isa. Trans Inst Min Metall 74: 33–43

    Google Scholar 

  • Croxford N J W, Jephcott S (1972) The McArthur lead-zinc-silver deposit, N. T. Proc. Australas. Inst Min Metall 243: 1–26

    Google Scholar 

  • Dickson F W (1977) The role of rhyolite-seawater reaction in the genesis of Kuroko ore deposits. Proc. 2nd Symposium on Rock-Water Interaction, Strasbourg, France, sec. IV, p 181–190

  • Ehrenberg K, Pilger A, Schröder F (1954) Das Schwefelkies-Zinkblende-Schwerspatlager von Meggen (Westfalen). Monogr. Dtsch. Blei-Zink-Erzlagerstätten, Beih Geol Jb 18:353

    Google Scholar 

  • Elder J W (1965) Physical processes in geothermal areas. Monogr Ser Am Geophys Union 8:211–239

    Google Scholar 

  • — (1977) Model of hydrothermal ore genesis. In: Volcanic processes in ore genesis, 4–13. London: Instn Min Metall

    Google Scholar 

  • Ellis A J (1968) Natural hydrothermal systems and experimental hot-water/rock interaction: reactions with NaCl solutions and trace metal extraction. Geochim Cosmochim Acta 32: 1356–1363

    Google Scholar 

  • Ethier G V, Campbell F A, Both R A, Krouse H R (1976) Geological setting of the Sullivan orebody and estimates of temperature and pressure of metamorphism. Econ Geol 71: 1570–1588

    Google Scholar 

  • Finlow-Bates T, Large D E (1978) Waterdepth as major control on the formation of submarine exhalative ore deposits. Geol Jb D 30: 27–39

    Google Scholar 

  • Finlow-Bates T, Stumpfl E F (1979) The copper and lead-zinc-silver orebodies of Mount Isa Mine, Queensland: products of one hydrothermal system. Annales Soc Geol Belgique T 102: 497–517

    Google Scholar 

  • Freeze A C (1966) On the origin of the Sullivan orebody. Kimberly, B. C. Can Inst Min Metall Spec 8: 263–294

    Google Scholar 

  • Glickson A Y, Derrick G M, Wilson I H, Hill R M (1976) Tectonic evolution and crustal setting of the middle Proterozoic Leichhardt River fault trough, Mount Isa region, northwestern Queensland. J Bur Miner Resour Aust Geol Geophys 1: 115–129

    Google Scholar 

  • Gray G (1980) Lithogeochemistry of Silvermines host rocks. (Abstract). Mineral Deposits Studies Group, University of Southampton

  • Greig H A, Baadsgaard H, Cumming G L, Folinsbee R E, Krouse H R, Ohmoto H. Sasaki A, Smejkal V (1971) Lead and sulphur isotopes of the Irish base metal mines in Carboniferous carbonate host rocks. Soc Mining Geol Japan Spec Issue 2: 84–92

    Google Scholar 

  • Gulson B L, Mizon K J (1979) Lead isotopes as a tool for gossan assessment in base metal exploration. J Geochem Expl 11: 299–320

    Google Scholar 

  • Gunzert G (1969) Altes und neues Lager am Rammelsberg bei Goslar: Erzmetall 22: 1–10

    Google Scholar 

  • — (1979) Die Grauerzvorkommen und der tektonische Bau der Erzlagerstätte am Rammelsberg bei Goslar. Erzmetall 32: 1–7

    Google Scholar 

  • Gwosdz W, Krüger H, Dietmar P, Baumann A (1974) Die Liegendschichten der devonischen Pyrit- und Schwer-spatlager von Eisen (Saarland), Meggen und des Rammelsberges. Geol Rundschau 63: 74–93

    Google Scholar 

  • Halliday A N, Stephens W E, Harmon R S (1980) Rb-Sr and O isotopic relationship in 3 zoned Caledonian granitic plutons, Southern Uplands, Scotland: evidence for varied sources and hybridization of magmas. J Geol Soc London 137: 329–348

    Google Scholar 

  • Helgeson H C (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267: 729–804

    Google Scholar 

  • Hutchings J (1979) The Tynagh deposit. In: Brown A G (ed) Excursion Handbook, Prospecting in Areas of Glaciated Terrain, Ireland, p 34–46. Ireland: Irish Assoc Econ Geol

    Google Scholar 

  • Hutchinson R W (1973) Volcanogenic sulphide deposits and their metallogenetic significance. Econ Geol 68: 1223–1246

    Google Scholar 

  • Kanasewich E R, Clowes R M, McCloughan C H (1969) A buried Precambrian rift in western Canada. Tectonophysics 8: 513–527

    Google Scholar 

  • Kraume E, Dahlgrün F, Ramdohr P, Wilke A (1955) Die Erzlager des Rammelsberges bei Goslar. Monogr. Dtsch. Blei-Zink-Erzlagerstätten, Beih Geol Jb 18: 394

    Google Scholar 

  • Krebs W (1976) Geology of European Stratabound lead-zinc-copper deposits. Canadian Soc. pet. Geologist, Seminar. University of Calgary, p 1–147

  • Lambert I B (1976) The McArthur River zinc-lead-silver deposit: features, metallogenesis and comparisons with some other stratiform ores. In: Wolf K H (ed) Vol. 6, Elsevier, Amsterdam Oxford New York, p 535–585

    Google Scholar 

  • Lambert I B, Scott K M (1973) Implications of geochemical investigations of sedimentary rocks within and around the McArthur zinc-lead-silver deposit, Northern Territory. J Geochem Explor 2: 307–330

    Google Scholar 

  • Large R R (1977) Chemical evolution and zonation of massive sulphide deposits in volcanic terrains. Econ Geol 72: 549–572

    Google Scholar 

  • Lister C R B (1974) On the penetration of water into hot rock. Geophys J R Astr Soc 39: 465–509

    Google Scholar 

  • Loudon A G, Lee M K, Dawling J F, Bourn R (1975) Lady Loretta silver lead-zinc deposit. In: Knight C L (ed) Economic Geology of Australia and Papua New Guinea. 1. Metals Mon. 5. p. 377–382. Melbourne, Australas. Inst. Min. and Metall.

    Google Scholar 

  • Mathias B V, Clark G J, Morris D, Russell R E (1973) The Hilton deposit — stratiform silver-lead-zinc mineralization of the Mount Isa type. In: Metallogenic Provinces and Mineral Deposits in the Southwestern Pacific, Fisher N H (ed). Bull Austr Bur Min Res 141: 33–58

    Google Scholar 

  • McKerrow W S, Lambert R St, Chamberlain V E (1980) The Ordovician, Silurian and Devonian time scales. Earth planet Sci Lett 51: 1–8

    Google Scholar 

  • Morrissey C J, Davis G R, Steed G M (1971) Mineralization in the Lower Carboniferous of Central Ireland Trans Instn Min Met Sect B 80: 174–185

    Google Scholar 

  • Mottl M J, Holland H D, Corr R F (1979) Chemical exchange during hydrothermal alteration of basalt by seawater — II. Experimental results for Fe, Mn and sulfur species. Geochim Cosmochim Acta 43: 869–884

    Google Scholar 

  • Murray W J (1961) Notes on Mount Isa geology. Proc Australs Inst Min Metall 197: 105–136

    Google Scholar 

  • Murray W J (1975) McArthur River H. Y. C. Lead-zinc and related deposits. In: Knight C L (ed) Economic geology of Australia and Papua New Guinea, 1. Mon 5, 329–339. Melbourne: Australas. Inst. Min. Metall.

    Google Scholar 

  • Norton D, Knight J E (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am J Sci 277: 937–981

    Google Scholar 

  • Oehler J H, Logan R G (1977) Microfossils, cherts and associated mineralization in the Proterozoic McArthur (H. Y. C.) lead-zinc-silver deposit. Econ Geol 72: 1393–1409

    Google Scholar 

  • Page R W. Depositional ages of the stratiform base metal deposits at Mount Isa and McArthur River, Australia based on U-Pb zircon dating of concordant tuff horizons. Econ Geol (in press)

  • Perkins W G (1981) Mount Isa copper ore bodies: evidence against a sedimentary origin. Baas Becking Geological Laboratory Symposium 2–4 March 1981

  • Pilger A (1972) Beziehungen des Meggener Lagers zum initialen Magmatismus. Schr Ges dt Metallhüttenund Bergleute e. V., 24: 149–160

    Google Scholar 

  • Plumb K A, Derrick G M (1975) Geology of the Proterozoic rocks of the Kimberley to Mount Isa region. In: Knight C L (ed) Economic geology of Australia and Papua New Guinea. 1. Metals, Mon. 5, p 217–252. Melbourne Australas. Inst. Min. and Metall.

    Google Scholar 

  • Ransom P W (1977) Geology of the Sullivan orebody. G. A. C., M. A. C., S. E. G., C. G. U. Joint Annual Meeting Fieldtrip Guidebook, Trip 1, 7–21, Vancouver

  • Richards J R (1975) Lead isotope data on three North Australian galena localities. Mineral Deposita 10: 287–301

    Google Scholar 

  • Ripley E M, Ohmoto H (1977) Mineralogic, sulphur isotope and fluid inclusion studies of the stratabound copper deposits at the Raul Mine, Peru. Econ Geol 72: 1017–1041

    Google Scholar 

  • — (1980) A FORTRAN program for plotting mineral stabilities in the Fe-Cu-S-O system in terms of log (∑SO4/∑H2S) or log f O2 vs. pH or T Computers and Geosciences 5: 289–300

    Google Scholar 

  • Russell M J (1968) Structural controls of base metal mineralization in Ireland in relation to continental drift. Trans Instn Min Met Sect B 77: 117–128

    Google Scholar 

  • Russell M J (1975) Lithogeochemical environment of the Tynagh basemetal deposit, Ireland, and its bearing on ore deposition. Trans Instn Min Met Sect B 84: 128–133

    Google Scholar 

  • -- (1976) Incipient plate separation and possible related mineralization in lands bordering the North Atlantic. Geol Assoc Canada Special Paper 14: 339–349

  • — (1978) Downward-excavating hydrothermal cells and Irish-type ore deposits: importance of an underlying thick Caledonian prism. Trans Instn Min Met Sect B 87: 168–171

    Google Scholar 

  • Samson I M (1980) Fluid inclusion studies on the Silvermines deposits, Co. Tipperary, Ireland. (Abstract). Mineral Deposits Studies Group, University of Southampton

  • Sawkins F J, Burke K (1980) Extensional tectonics and mid-Paleozoic massive sulfide occurrences in Europe. Geol Rundschau 69: 349–360

    Google Scholar 

  • Sevastopulo G D (1979) The stratigraphical setting of base-metal deposits in Ireland. In: Prospecting in Areas of Glaciated Terrain, London Instn Min Met. p 8–15

  • Shanks W C, Bischoff J L (1980) Geochemistry, sulfur isotope composition and accumulation rates of Red Sea geothermal deposits. Econ Geol 75: 445–459

    Google Scholar 

  • Smith W D (1969) Penecontemporaneous faulting and its likely significance in relation to Mt Isa ore deposition. Spec Publs Geol Soc Aust 2: 225–235

    Google Scholar 

  • Smith J W, Croxford N J W (1973) Sulphur isotope ratios in the McArthur lead-zinc-silver deposit. Nature Phys Sci 245: 10–12

    Google Scholar 

  • Solomon M (1976) "Volcanic" massive sulphide deposits and their host rocks — a review and explanation. In: Wolf K H (ed) Vol. 6, Elsevier, Amsterdam Oxford New York, p 21–54

    Google Scholar 

  • — (1980) Hot-water plumes on the ocean floor: clues to submarine ore formation. H Geol Soc Austr 30: 89–90

    Google Scholar 

  • Solomon M, Walshe J L (1979) The formation of massive-sulphide deposits on the sea floor. Econ Geol 74: 797–813

    Google Scholar 

  • Solomon P J (1965) Investigations into sulphide mineralization at Mount Isa, Queensland. Econ Geol 60: 737–765

    Google Scholar 

  • Spooner E T C, Fyfe W S (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contr. Mineral Petrol 42: 287–304

    Google Scholar 

  • Stanton R L (1963) Constitutional features of the Mount Isa sulphide ores and their interpretation. Proc Australas Inst Min Metall 205: 131–153

    Google Scholar 

  • Stone R A (1972) Waulsortian-type bioherms (reefs) of Mississippian age central Bridger Range, Montana. Guidebook, 21 Ann Field Conf Montana geol Soc 37–55

  • Taylor S, Andrew C J (1978) Silvermines orebodies, County Tipperary, Ireland. Trans Instn Min Met Sect B 87: 111–124

    Google Scholar 

  • Turner J S, Gustafson L B (1978) The flow of hot, saline solutions from vents in the sea floor — some implications for exhalative sulphide deposits. Econ Geol 73: 1082–1100

    Google Scholar 

  • Walker R N, Logan R G, Binnekamp J G (1977) Recent geological advances concerning the H. Y. C. and associated deposits, McArthur River, N. T., J Geol Soc Austr 24: 365–380

    Google Scholar 

  • Walker R N, Muir M D, Diver W L, Williams N, Wilkins N (1977) Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia. Nature 265: 526–529

    Google Scholar 

  • Walshe J L, Solomon M (1981) An investigation into the environment of formation of the volcanic hosted Mt. Lyell copper deposits using geology, mineralogy, stable isotopes and a six-component chlorite solid solution model. Econ. Geol 76: (in press)

  • Wedepohl K H, Delevaux M H, Doe B R (1978) The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Palaezoic mineral deposits in the Federal Republic of Germany. Contrib Mineral Petrol 65: 273–281

    Google Scholar 

  • Weisser J D (1972) Zur Methodik der Exploration Meggen. Schr Ges Metallhütten und Bergleute e. V. 24: 167–186

    Google Scholar 

  • Whitcher I G (1975) Dugald River zinc-lead deposit. In: Knight C L (ed) Economic Geology of Australia and Papua New Guinea. 1. Metals, Mon. 5, 372–376. Melbourne Australas. Inst. Min. and Metall.

    Google Scholar 

  • Williams N (1978) Studies of the base metal sulfide deposits at McArthur River, Northern Territory, Australia: I. The Cooley and Ridge deposits. Econ Geol 73: 1005–1035

    Google Scholar 

  • — (1979) Studies of the base-metal sulphide deposits at McArthur River, Northern Territory, Australia. II. The Sulphide-S and Organic-C relationships of the concordant deposits and their significance — a reply. Econ Geol 74: 1699–1702

    Google Scholar 

  • Zimmermann R A, Amstutz G C (1971) The Meggen pyrite-barite deposit. In: Mueller G (ed) Sedimentology of Parts of Central Europe, Guidebook 8th Internat. Sediment Congr., Heidelberg, p 254–261

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, M.J., Solomon, M. & Walshe, J.L. The genesis of sediment-hosted, exhalative zinc + lead deposits. Mineral. Deposita 16, 113–127 (1981). https://doi.org/10.1007/BF00206458

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206458

Keywords

Navigation