Skip to main content
Log in

Kinetics of wound-induced hydraulic signals and variation potentials in wheat seedlings

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Displacement transducers were used to demonstrate that localised wounding causes a rapid and systemic increase in leaf thickness in seedlings of wheat (Triticum durum Desf. cv. Iva). These increases are interpreted as reflecting wound-induced hydraulic signals. The duration of the wound-induced increase was found to be about 1 h or more, and it was shown that repeated wounds could induce repeated responses. The increase occurred even when plants had no access to an external water supply. Change in leaf thickness was shown closely to reflect change in leaf water potential. The velocity and kinetics of the wound-induced hydraulic signal were measured using multiple transducers ranged along a single leaf. The front of the signal was shown to travel through the plant at rates of at least 10 cm · s−1. Development of the increase in leaf thickness was found to be relatively faster furthest from the wound. Onset of the change in leaf thickness in leaves remote from the wound was shown to precede onset of changes in surface electrical potential (variation potential) which are also induced by wounding. In contrast to reports from other species, variation potentials in wheat were here shown to spread extremely rapidly, at rates similar to that of the hydraulic signal. These data support the view that wound-induced hydraulic signals are the trigger for variation potentials in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ψw :

water potential

References

  • Bowles, D.J. (1990) Defense-related proteins in higher plants. Annu. Rev. Biochem. 59, 873–907

    Google Scholar 

  • Chessin, M., Zipf, A.E. (1990) Alarm systems in higher plants. Bot. Rev. 56, 193–235

    Google Scholar 

  • Cosgrove, D.J., Durachko, D.M. (1986) Automated pressure probe for measurement of water transport properties of higher plant cells. Rev. Sci. Instrum. 57, 2614–2619

    Google Scholar 

  • Frachisse, J.-M., Desbiez, M.-O. (1989) Investigation of the wave of electric depolarization induced by wounding in Bidens pilosus L. Biochem. Physiol. Pflanzen. 185, 357–368

    Google Scholar 

  • Haberlandt, G. (1890) Das reizleitende Gewebesystem der Sinnpflanze. Leipzig

  • Hüsken, D., Steudle, E., Zimmermann, U. (1978) Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol. 61, 158–163

    Google Scholar 

  • MacDougal, D.T. (1896) The mechanism of movement and transmission of impulses in Mimosa and other “sensitive” plants: a review with some additional experiments. Bot Gaz. XXII, 296–303

    Google Scholar 

  • Malone, M., Stanković, B. (1991) Surface potentials and hydraulic signals in wheat leaves following localised wounding by heat. Plant Cell Environ. 14, 431–436

    Google Scholar 

  • Matsuda K., Rayan, A. (1990) Anatomy: a key factor regulating plant tissue response to water stress. In: Environmental injury to plants, pp. 63–88, Academic Press, London

    Google Scholar 

  • Meidner, H. (1990) The absorption lag, epidermal turgor and stomata. J. Exp. Bot. 41, 1115–1118

    Google Scholar 

  • Nakahori, K., Koizumi, K., Muramatsu, S., Ohtani, H., Masuko, M., Nakase, S., Katou, K., Okamoto, H. (1990) Measurement of the respiration dependent component of intracellular pressure with an improved pressure probe. Plant Cell Physiol. 31, 859–864

    Google Scholar 

  • Pickard, B.G. (1973) Action potentials in higher plants. Bot. Rev. 39, 172–201

    Google Scholar 

  • Raschke, K. (1970) Leaf hydraulic system: rapid epidermal and stomatal responses to changes in water supply. Science 167, 189–191

    Google Scholar 

  • Ricca, U. (1916) Soluzione d'un problema di fisiologia. La propagazione di stimulo nella Mimosa. Nuovo Giorn. Bot. Ital. 23, 51–170

    Google Scholar 

  • Roblin, G. (1979) Mimosa pudica: a model for the study of the excitability in plants. Biol. Rev. 54, 135–153

    Google Scholar 

  • Roblin, G. (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol. 26, 455–467

    Google Scholar 

  • Ryan, C.A., An, G. (1988) Molecular biology of wound-inducible proteinase inhibitors in plants. Plant Cell Environ. 11, 345–349

    Google Scholar 

  • Schildknecht, H. (1984) Turgorins- new chemical messengers for plant behaviour. Endeavor 8, 113–117

    Google Scholar 

  • Sibaoka, T. (1969) Physiology of rapid movements in higher plants. Annu. Rev. Plant Physiol. 210, 165–184

    Google Scholar 

  • Tinz-Füchtmeier, A., Gradmann, D. (1990) Laser-interferometric re-examination of rapid conductance of excitation in Mimosa pudica. J. Exp. Bot. 41, 15–19

    Google Scholar 

  • Van Sambeek, J.W., Pickard, B.G. (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factore released from wounds. I. Variation potential and putative action potentials in intact plants. Can. J. Bot. 54, 2642–2650

    Google Scholar 

  • Wildon, C., Doherty, H.M., Eagles, G., Bowles, D.J., Thain, J.F. (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann. Bot. 64, 691–695

    Google Scholar 

  • Zhang, J., Davies, W.J. (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Mol. Biol. 42, 55–76

    Google Scholar 

  • Zimmermann, U., Steudle, E. (1978) Physical aspects of water relations of plant cells. Adv. Bot. Res. 6, 45–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Grateful thanks are due to Paul Springer of the HRI (Wellesbourne) mechanical workshop for building equipment, and to H.G. Jones for helpful discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malone, M. Kinetics of wound-induced hydraulic signals and variation potentials in wheat seedlings. Planta 187, 505–510 (1992). https://doi.org/10.1007/BF00199969

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199969

Key words

Navigation