Skip to main content
Log in

Trichromatic color vision in the salamander (Salamandra salamandra)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Spectral sensitivity functions were measured between 334 nm and 683 nm in Salamandra salamandra by utilizing two behavioral reactions: the negative phototactic response, and the prey catching behavior elicited by a moving worm dummy. The action spectrum of the negative phototactic response revealed 3 pronounced maxima: at 360–400 nm, at 520–540 nm, and at 600–640 nm. In the range around 450 nm, there was a “reaction gap” where sensitivity could not be measured. The action spectrum of the prey catching behavior was entirely different: maximal sensitivity was found at 500 nm and at 570 nm. Between 500 nm and 334 nm sensitivity decreased continuously for about 1 log unit (Fig. 6).

Experiments under chromatic adaptation using the prey catching behavior indicate that the relatively high sensitivity in the ultraviolet range is not due to a separate ultraviolet photoreceptor, but is based on the responses of a photoreceptor maximally sensitive at about 500 nm.

Color discrimination was tested by moving a colored worm dummy within a differently colored surround of equal subjective brightness. The salamanders were able to discriminate blue from green, and green from red (Fig. 10). The results can be explained by assuming a trichromatic color vision based on 3 photoreceptor types maximally sensitive around 450 nm, 500 nm and 570 nm (Fig. 12).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Dietz M (1972) Erdkröten können UV-Licht sehen. Naturwissenschaften 59: 316

    Google Scholar 

  • Donner KO, Reuter T (1976) Visual pigments and photoreceptor function. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, 251–277

    Google Scholar 

  • Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In Fite KV (ed) The amphibian visual system. Academic Press, New York San Francisco London, 141–202

    Google Scholar 

  • Govardovskii VI, Zueva LV (1974) Spectral sensitivity of the frog eye in the ultraviolet and visible region. Vision Res 14: 1317–1321

    Google Scholar 

  • Grüsser-Cornehls U, Himstedt W (1976) The urodele visual system. In Fite KV (ed) The amphibian visual system. Academic Press, New York San Francisco London, 203–266

    Google Scholar 

  • Hailman J, Jaeger R (1974) Phototactic responses to spectrally dominant stimuli and use of color vision by adult anuran amphibians: a comparative survey. Animal Behav 22: 757–795

    Google Scholar 

  • Hárosi FI (1982) Recent results from single-cell microspectrophotometry: cone pigments from frog, fish and monkey. Color Res Applications 7: 135–141

    Google Scholar 

  • Himstedt W (1971) Die Tagesperiodik von Salamandriden. Oecologia (Berl) 8: 194–208

    Google Scholar 

  • Himstedt W (1972) Untersuchungen zum Farbensehen von Urodelen. J Comp Physiol 81: 229–238

    Google Scholar 

  • Himstedt W (1982) Evolutionary aspects of color vision in amphibians. In: Mossakovski D, Roth G (eds) Environmental adaptation and evolution. Fischer, Stuttgart New York, 67–85

    Google Scholar 

  • Himstedt W, Fischerleitner E (1975) Die Antworten von Retinaneuronen auf Farbreize bei Urodelen. Zool Jahrb Abt Allg Zool Physiol 79: 128–147

    Google Scholar 

  • Himstedt W, Helas A, Sommer T (1981) Projection of color coding retinal neurons in urodele amphibians. Brain Behav Evol 18: 19–32

    Google Scholar 

  • Honjo I (1939) Farbensinn der Feuersalamanderlarve. Mem Coll Sci Kyoto Imp Univ 15: Nr. 2

    Google Scholar 

  • Ingle D (1973) Two visual systems in the frog. Science 111: 1053–1055

    Google Scholar 

  • Jacobs G (1992) Ultraviolet vision in vertebrates. Am Zool 32: 544–554

    Google Scholar 

  • Jaeger RG, Hailman JP (1973) Effects of intensity on the phototactic responses of adult anuran amphibians: a comparative survey. Z Tierpsychologie 33: 352–407

    Google Scholar 

  • Kicliter E (1973) Flux, wavelength and movement discrimination in frogs: forebrain and midbrain contribution. Brain Behav Evol 8: 340–365

    Google Scholar 

  • Kunz YW, Wildenburg G, Goodrich L, Callaghan E (1994) The fate of ultraviolet receptors in the retina of the atlantic salmon (Salmo salar). Vision Res 34: 1375–1383

    Google Scholar 

  • Liebman PA, Entine G (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res 8: 761–775

    Google Scholar 

  • Makino CL, Taylor WR, Baylor DA (1991) Rapid charge movements and photosensitivity of visual pigments in salamander rods and cones. J Physiol 442: 761–780

    Google Scholar 

  • Maximov V, Orlov O, Reuter T (1985) Chromatic properties of the retinal afferents in the thalamus and the tectum of the frog (Rana temporaria). Vision Res 25: 1037–1049

    Google Scholar 

  • Meng M (1957) Untersuchungen zum Farben- und Formensehen der Erdkröte (Bufo bufo L.). Zool Beiträge 3/3: 313–363

    Google Scholar 

  • Muntz WRA (1962a) Effectiveness of different colours of light in releasing the positive phototactic behaviour of frogs, and a possible function of the retinal projection to the diencephalon. J Neurophysiol 25: 712–720

    Google Scholar 

  • Muntz WRA (1962b) Microelectrode recordings from the diencephalon of the frog (Rana pipiens) and a blue-sensitive system. J Neurophysiol 25: 712–720

    Google Scholar 

  • Muntz WRA (1963) Phototaxis and green rods in urodeles. Nature 199: 620

    Google Scholar 

  • Neumeyer C (1984) On spectral sensitvity in the goldfish: evidence for neural interactions between different cone mechanisms. Vision Res 24: 1223–1231

    Google Scholar 

  • Neumeyer C (1992) Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J Comp Physiol A 171: 639–649

    Google Scholar 

  • Perry RJ, McNaughton PA (1991) Response properties of cones from the retina of the tiger salamander. J Physiol 433: 651–687

    Google Scholar 

  • Reuter T (1969) Visual pigments and ganglion cell activity in the retinae of tadpoles and adult frogs (Rana temporaria L.). Acta Zoologica Fennica 122: 1–64

    Google Scholar 

  • Reuter T, Virtanen K (1976) Color discrimination mechanisms in the retina of the toad (Bufo bufo L.). J Comp Physiol 109: 337–343

    Google Scholar 

  • Roth G (1987) Visual behaviour in salamanders. Studies of brain function, Vol. 14, Springer Verlag, Heidelberg Berlin

    Google Scholar 

  • Scheibner H, Hunold W, Bezaut M (1975) Color discrimination functions in the frog optic tectum (Rana esculenta). Vision Res 15: 1175–1180

    Article  Google Scholar 

  • Tempel P, Himstedt W (1979) Color vision in salamander larvae. Z Naturforsch 34: 890–891

    Google Scholar 

  • Tempel P, Himstedt W, Steinke S (1982) Spectral sensitivity of visual neurons and of phototactic behaviour in Salamandra. Zool Jahrb Physiol 86: 401–412

    Google Scholar 

  • Zipse W (1935) Können unsere heimischen Frösche und echten Kröten ultraviolettes Licht sehen? Zool Jahrb 55: 487–524

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przyrembel, C., Keller, B. & Neumeyer, C. Trichromatic color vision in the salamander (Salamandra salamandra). J Comp Physiol A 176, 575–586 (1995). https://doi.org/10.1007/BF00196422

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196422

Key words

Navigation