Skip to main content
Log in

The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Dragonflies of the genus Sympetrum have compound eyes conspicuously divided into dorsal and ventral regions. Using anatomical, optical, electrophysiological, in-vivo photochemical and microspectrophotometrical methods, we have investigated the design and physiology of the dorsal part which is characterized by a pale yellow-orange screening pigment and extremely large facets. The upper part of the yellow dorsal region is a pronounced fovea with interommatidial angles approaching 0.3°, contrasting to the much larger values of 1.5°–2° in the rest of the eye. The dorsal eye part is exclusively sensitive to short wavelengths (below 520 nm). It contains predominantly blue-receptors with a sensitivity maximum at 420 nm, and a smaller amount of UV-receptors. The metarhodopsin of the blue-receptors absorbs maximally at 535 nm. The yellow screening pigment transmits longwavelength light (cut-on 580 nm), which increases the conversion rate from metarhodopsin to rhodopsin (see Fig. 11a). We demonstrate that because of the yellow pigment screen nearly all of the photopigment is in the rhodopsin state under natural conditions, thus maximizing sensitivity. Theoretical considerations show that the extremely long rhabdoms (1.1 mm) in the dorsal fovea are motivated for absorption reasons alone. A surprising consequence of the long rhabdoms is that the sensitivity gain, caused by pumping photopigment into the rhodopsin state, is small. To explain this puzzling fact we present arguments for a mechanism producing a gradient of rhodopsin concentration along the rhabdom, which would minimize saturation of transduction units, and hence improve the signal-to-noise ratio at high intensities. The latter is of special importance for the short integration time and high contrast sensitivity these animals need for spotting small prey at long distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ERG :

electroretinogram

R :

rhodopsin

M :

metarhodopsin

References

  • Armett-Kibel C, Meinertzhagen IA (1983) Structural organization of the ommatidium in the ventral compound eye of the dragonfly Sympetrum. J Comp Physiol 151: 285–295

    Google Scholar 

  • Barlow RB, Birge RR, Kaplan E, Tallent JR (1993) On the molecular origin of photoreceptor noise. Nature 366: 64–66

    Google Scholar 

  • Bernard GD (1983) Bleaching of rhabdoms in eyes of intact butterflies. Science 219: 69–71

    Google Scholar 

  • Bertrand D, Fuortes G, Muri R (1979) Pigment transformation and electrical responses in retinula cells of drone, Apis mellifera. J Physiol (Lond) 296: 431–441

    Google Scholar 

  • Bruno MS, Barnes SN, Goldsmith TH (1977) The visual pigment and visual cycle of the lobster Homarus. J Comp Physiol 120: 123–142

    Google Scholar 

  • Burkhardt D, Streck P (1965) Das Sehfeld einzelner Sehzellen: Eine Richtigstellung. Z Vergl Physiol 51: 151–152

    Google Scholar 

  • Demoll R (1913) Gelegentliche Beobachtungen an Libellen. Biol Zentralbl 33: 727–733

    Google Scholar 

  • Dubs A, Laughlin SB, Srinivasan MV (1981) Single photon signals in fly photoreceptors and first order interneurones at behavioural threshold. J Physiol (Lond) 317: 317–334

    Google Scholar 

  • Ebrey TG, Honig B (1977) New wavelength dependent visual pigment nomograms. Vision Res 17: 147–151

    Google Scholar 

  • Franceschini N, Kirschfeld K (1971) Les phénomènes de pseudopupille dans l'œil composé de Drosophila. Kybernetik 9: 159–182

    Google Scholar 

  • Gates DM (1980) Biophysical ecology, Springer, New York Heidelberg Berlin

    Google Scholar 

  • Gogala M (1967) Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaronius Scop. (Neuroptera, Ascalaphidae). Z Vergl Physiol 57: 232–243

    Google Scholar 

  • Gogala M, Hamdorf K, Schwemer J (1970) UV-Sehfarbstoff bei Insekten. Z Vergl Physiol 70: 410–413

    Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 145–224

    Google Scholar 

  • Hamdorf K, Gogala M, Schwemer J (1971) Beschleunigung der “Dunkeladaptation” eines UV-Rezeptors durch sichtbare Strahlung. Z Vergl Physiol 75: 189–199

    Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 156–166

    Google Scholar 

  • Hateren JH van (1984) Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors. J Comp Physiol A 154: 761–771

    Google Scholar 

  • Henderson ST, Hodgkiss D (1963) The spectral energy distribution of daylight. Br J Appl Phys 14: 125–131

    Google Scholar 

  • Hochstrate P, Hamdorf K (1990) Microvillar components of light adaptation. J Gen Physiol 95: 891–910

    Google Scholar 

  • Horridge GA (1969) Unit studies on the retina of dragonflies. Z Vergl Physiol 62: 1–37

    Google Scholar 

  • Horridge GA (1976) The ommatidium of the dorsal eye of Cloëon as a specialization for photoreisomerization. Proc R Soc Lond B 193: 17–29

    Google Scholar 

  • Horridge GA, McLean M (1978) The dorsal eye of the mayfly Ataloplebia (Ephemeroptera). Proc R Soc Lond B 200: 137–150

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R (1982) Light guides in the dorsal eye of the male mayfly. Proc R Soc Lond B 216: 25–51

    Google Scholar 

  • Howard J, Snyder AW (1983) Transduction as a limitation on compound eye function and design. Proc R Soc Lond B 217: 287–307

    Google Scholar 

  • Howard J, Blakeslee B, Laughlin SB (1987) The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B 231: 415–435

    Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Z Naturforsch 29c: 592–596

    Google Scholar 

  • Kirschfeld K, Wenk P (1976) The dorsal compound eye of simuliid flies: An eye specialized for the detection of small, rapidly moving objects. Z Naturforsch 31: 764–765

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg, pp 90–111

    Google Scholar 

  • Laughlin SB (1989) The reliability of single neurons and circuit design: a case study. In: Durbin R, Miall C, Mitchison G (eds) The computing neuron. Addison Wesley, Wokingham, pp 322 -336

    Google Scholar 

  • Laughlin SB, McGinnes S (1978) The structure of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res 188: 427–447

    Google Scholar 

  • Laughlin SB, Howard J, Blakeslee B (1987) Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B 231:437–467

    Google Scholar 

  • Mayer G (1961) Studien an der Heidelibelle Sympetrum vulgatum (L.). Naturk Jb Linz 7: 201–217

    Google Scholar 

  • Mazokin-Porshniakov GA (1959) Colorimetric study of vision in the dragonfly. Biofizika 4: 427–436

    Google Scholar 

  • McFarland WN, Munz FW (1974) The visible spectrum during twilight and its implications to vision. In: Evans GC, Bainbridge R, Rackham O (eds) Light as an ethological factor: II. The 16th symposium of the British Ecological Society 1974. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne, pp 249–287

    Google Scholar 

  • Meinertzhagen IA, Menzel R, Kahle G (1983) The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum. J Comp Physiol 151: 295–310

    Google Scholar 

  • Menzel J, Wunderer H, Stavenga DG (1991) Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue Cell 23: 525–535

    Google Scholar 

  • Meyer EP, Labhart T (1993) Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell Tissue Res 272: 17–22

    Google Scholar 

  • Nilsson D-E, Howard J (1989) Intensity and polarization of the eyeshine in butterflies. J Comp Physiol A 166: 51–56

    Google Scholar 

  • Nilsson D-E, Modlin RF (1994) A mysid shrimp carrying a pair of binoculars. J Exp Biol 189: 213–236

    Google Scholar 

  • Ruck P (1958) A comparison of the electrical responses of compound eyes and dorsal ocelli in four insect species. J Insect Physiol 2: 261–274

    Google Scholar 

  • Ruck P (1965) The components of the visual system of a dragonfly. J Gen Physiol 49: 289–307

    Google Scholar 

  • Schneider L, Gogala M, Draslar K, Langer H, Schlecht P (1978) Feinstruktur und Schirmpigment-Eigenschaften der Ommatidien des Doppelauges von Ascalaphus (Insecta, Neuroptera). Eur J Cell Biol16: 274–307

    Google Scholar 

  • Schwemer J (1993) Visual pigment renewal and the cycle of chromophore in the compound eye of the blowfly. In: Wiese K et al. (eds) Sensory systems in arthropods. Birkhäuser, Basel, pp 54–68

    Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: Physical limitations and design. J Comp Physiol 116: 161–182

    Google Scholar 

  • Snyder AW (1979) The physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 225–313

    Google Scholar 

  • Stavenga DG (1979) Pseudopupils of compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 357–439

    Google Scholar 

  • Stavenga DG (1989) Pigments in compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg, pp 153–172

    Google Scholar 

  • Stavenga DG (1992) Eye regionalization and spectral tuning of retinal pigments in insects. Trends Neurosci 15: 213–218

    Google Scholar 

  • Stavenga DG (1993) Screening pigments and photoconversion in the fly eye. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 81–90

    Google Scholar 

  • Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 11–61

    Google Scholar 

  • Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbance band of visual pigment spectra. Vision Res 33: 1011–1017

    Google Scholar 

  • Streck P (1972) Der Einfluß des Schirmpigmentes auf das Sehfeld einzelner Sehzellen der Fliege Calliphora erythrocephalia Meig. Z Vergl Physiol 76: 372–402

    Google Scholar 

  • Vallet AM, Coles JA (1991) A method for estimating the minimum visual stimulus that evokes a behavioural response in the drone, Apis mellifera. Vision Res 31: 1453–1455

    Google Scholar 

  • Warrant EJ, Pinter RB (1990) Changes of acuity during light and dark adaptation in the dragonfly compound eye. Z Naturforsch 45c: 137–141

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labhart, T., Nilsson, DE. The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J Comp Physiol A 176, 437–453 (1995). https://doi.org/10.1007/BF00196410

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196410

Key words

Navigation