Psychopharmacology

, Volume 92, Issue 2, pp 236–240

Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats

  • P. G. MacRae
  • W. W. Spirduso
  • T. J. Walters
  • R. P. Farrar
  • R. E. Wilcox
Original Investigations

DOI: 10.1007/BF00177922

Cite this article as:
MacRae, P.G., Spirduso, W.W., Walters, T.J. et al. Psychopharmacology (1987) 92: 236. doi:10.1007/BF00177922
  • 138 Views

Abstract

Endurance training is associated with higher binding of 3H-spiperone to striatal D2 dopamine receptors of rats sacrificed 48 h following the last exercise bout (Gilliam et al. 1984). In the present study we investigated the effects of endurance training in presenescent older rats on the relationship between steady-state levels of DA and its metabolites in striatum versus the affinity and density of striatal D2 DA receptors. Citrate synthase activity of the gastrocnemius-plantaris muscle was 29.06±2.27 μmole/g wet wt in 21-month-old trained rats versus 22.88±1.13 μmole/g wet wt in 21-month-old untrained animals.

DOPAC levels and DOPAC/DA ratios were greater in the old controls. Endurance training was associated with lower DOPAC levels in the 21-month-old animals. Thus, endurance training may postpone selectively changes in DA metabolism over a portion of the lifespan.

As expected, the number of D2 DA binding sites was reduced with age (6 months Bmax:429±21 fmoles/mg protein; 21 months:355±20) with no change in affinity. The Bmax of old runners was significantly higher (457 ± 38 fmoles/mg protein) than that of old controls. Thus, endurance training appears to exert a protective effect on D2 dopamine receptors during the lifespan. Taken together, the present results suggest that there may be a possible reciprocal relationship between changes in DA metabolites and DA binding as a function of exercise in presenescent older rats, and that endurance training may decelerate the effects of age both on nigrostriatal dopamine neurons and on striatal D2 dopamine receptors during a portion of the lifespan.

Key words

Basal gangliaD2 dopamine receptorDopamine metabolitesEndurance trainingAging

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. G. MacRae
    • 1
  • W. W. Spirduso
    • 1
    • 2
  • T. J. Walters
    • 1
  • R. P. Farrar
    • 1
    • 2
  • R. E. Wilcox
    • 2
  1. 1.Department of Health and Physical EducationUniversity of TexasAustinUSA
  2. 2.Institute for Neuroscience, Department of Pharmacology and Toxicology, College of PharmacyUniversity of TexasAustinUSA