Skip to main content
Log in

Developmental cell death: morphological diversity and multiple mechanisms

  • Review Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Physiological cell death is a widespread phenomenon in the development of both vertebrates and invertebrates. This review concentrates on an aspect of developmental cell death that has tended to be neglected, the manner in which the cells are dismantled. It is emphasized that the dying cells may adopt one of at least three different morphological types: “apoptotic”, “autophagic”, and “non-lysosomal vesiculate”. These probably reflect a corresponding multiplicity of intracellular events. In particular, the destruction of the cytoplasm in these three types appears to be achieved primarily by heterophagy, by autophagy and by non-lysosomal degradation, respectively. The various mechanisms underlying both nuclear and cytoplasmic destruction are reviewed in detail. The multiplicity of destructive mechanisms needs to be born in mind in studies of other aspects of cell death such as the signals which trigger it, since different signals probably trigger different types of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison AC (1969) Lysosomes and cancer. In: Dingle JT, Fell HB (eds) Lysosomes in biology and pathology, vol 2. North-Holland Publishing Co, Amsterdam London, pp 178–204

    Google Scholar 

  • Andriès J-C (1975) Différenciation et mort cellulaires au cours de la métamorphose mésentérique de la larve d'Aeshna cyanea. J Microsc Biol Cell 24:327–350

    Google Scholar 

  • Andriès J-C (1977) Dégénérescence, phagocytose et rejet cellulaire au niveau du mésentéron d'Aeshna cyanea (Insecte, Odonate). Biol Cellulaire 29:203–208

    Google Scholar 

  • Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202

    Google Scholar 

  • Bataillon L (1891) Recherches anatomiques et expérimentales sur la métamorphose des amphibiens anoures. Ann de l'Univ Lyon 2:1–123

    Google Scholar 

  • Beaulaton J (1986) Programmed cell death. Cytochemical evidence for accumulation of calcium in mitochondria and its translocation into lysosomes: X-ray microanalysis in metamorphosing insect muscles. Histochem J 18:527–536

    Google Scholar 

  • Beaulaton J, Lockshin RA (1977) Ultrastructural study of the normal degeneration of the intersegmental muscles of Antheraea polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference to cellular autophagy. J Morphol 154:39–58

    Google Scholar 

  • Beaulaton J, Lockshin RA (1982) The relation of programmed cell death to development and reproduction: Comparative studies and an attempt at classification. Int Rev Cytol 79:215–235

    Google Scholar 

  • Bellairs R (1961) Cell death in chick embryos as studied by electron microscopy. J Anat (Lond) 95:54–60

    Google Scholar 

  • Berg DK (1982) Cell death in neuronal development; regulation by trophic factors. Curr Top Neurobiol 6:297–331

    Google Scholar 

  • Bernelli-Zazzera A (1975) Ribosomes in dying liver cells. In: Keppler D (ed) Pathogenesis and mechanisms of liver cell necrosis. MTP Press, Lancaster, pp 103–111

    Google Scholar 

  • Bessis M (1964) Studies on cell agony and death: an attempt at classification. In: de Reuck AVS, Knight J (eds) Ciba Foundation Symposium on cellular injury. Churchill, London, pp 287–316

    Google Scholar 

  • Bishop GA, King JS (1982) Intracellular horseradish peroxidase injections for tracing neural connections. In: Mesulam M-M (ed) Tracing neural connections with horseradish peroxidase. IBRO Handbook Series. Wiley, Chichester, pp 185–247

    Google Scholar 

  • Blaser PF, Catsicas S, Clarke PGH (1988) Dependence of developing neurons on protein synthesis in their axonal terminal territory. Eur J Neurosci [Suppl] 1:83

    Google Scholar 

  • Boobis AR, Fawthrop DJ, Davies DS (1989) Mechanisms of cell death. Trends Pharmacol Sci 10:275–280

    Google Scholar 

  • Borgers M, Thoné F (1976) Further characterization of phosphatase activities using non-specific substrates. Histochem J 8:301–317

    Google Scholar 

  • Bowen ID (1981) Techniques for demonstrating cell death. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman & Hall, London, pp 379–444

    Google Scholar 

  • Bowen ID (1984) Laboratory techniques for demonstrating cell death. In: Davies I, Sigee DC (eds) Cell ageing and cell death. Soc Exp Biol Seminar Series Vol 25. Cambridge University Press, Cambridge, London, pp 5–40

    Google Scholar 

  • Bowen ID, Ryder TA (1974) Cell autolysis and deletion in the planarian Polycelis tenuis Iijima. Cell Tissue Res 154:265–274

    Google Scholar 

  • Bowen ID, Ryder TA (1976) Use of the p-nitrophenyl phosphate method for the demonstration of acid phosphatase during starvation and cell autolysis in the planarian Polycelis tenuis Iijima. Histochem J 8:319–329

    Google Scholar 

  • Bowen ID, Ryder TA, Dark C (1976) The effects of starvation on the planarian worm Polycelis tenuis. Cell Tissue Res 1:193–209

    Google Scholar 

  • Bowen ID, den Hollander JE, Lewis GHJ (1982) Cell death and acid phosphatase activity in the regenerating planarian Polycelis tenuis Iijima. Differentiation 21:160–167

    Google Scholar 

  • Brachet J, Decroly-Briers M, Hoyez J (1958) Contribution à l'étude des lysosomes au cours du développement embryonnaire. Bull Soc Chim Biol 40:2039–2048

    Google Scholar 

  • Brunk UT (1973) Lysosomes and residual bodies in neurons and in vitro cultivated glia cells. Acta Univ Upsaliensis 148:1–38

    Google Scholar 

  • Butterworth FM, LaTendresse BL (1973) Quantitative studies of cytochemical and cytological changes during cell death in the larval fat body of Drosophila melanogaster. J Insect Physiol 19:1487–1500

    Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    CAS  PubMed  Google Scholar 

  • Chu-Wang I-W, Oppenheim RW (1978) Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally-occurring and induced cell loss during development. J Comp Neurol 177:33–58

    Google Scholar 

  • Clarke J, Shannon LM (1976) The isolation and characterization of the glycopeptides from horseradish peroxidase isoenzyme C. Biochim Biophys Acta 427:428–442

    Google Scholar 

  • Clarke PGH (1982) Labelling of dying neurons by peroxidase injected intravascularly in chick embryos. Neurosci Lett 30:223–228

    Google Scholar 

  • Clarke PGH (1984) Identical populations of phagocytes and dying neurons revealed by intravascularly injected horseradish peroxidase, and by endogenous glutaraldehyde-resistant acid phosphatase, in the brains of chick embryos. Histochem J 16:955–969

    Google Scholar 

  • Clarke PGH (1985a) Neuronal death in the development of the vertebrate nervous system. Trends Neurosci 8:345–349

    Article  Google Scholar 

  • Clarke PGH (1985b) Neuronal death during development in the isthmo-optic nucleus of the chick: Sustaining role of afferents from the tectum. J Comp Neurol 234:365–379

    Google Scholar 

  • Clarke PGH, Egloff M (1988) Combined effects of deafferentation and de-efferentation on isthmo-optic neurons during the period of their naturally occurring cell death. Anat Embryol 179:103–108

    Google Scholar 

  • Clarke PGH, Hornung JP (1989) Changes in the nuclei of dying neurons as studied with thymidine autoradiography. J Comp Neurol 283:438–449

    Google Scholar 

  • Clarke PGH, Martin AH (1985) Effects of de-efferentation on chick spinal motoneurons: peroxidase uptake, and activities of acid phosphatase and N-acetyl-β-glucosaminidase. Cell Biol Int Rep 9:676

    Google Scholar 

  • Cohen JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 132:38–42

    Google Scholar 

  • Collin R (1906–1907) Recherches cytologiques sur le développement de la cellule nerveuse. Nevraxe 8:181–309

    Google Scholar 

  • Cowan WM, Fawcett JW, O'Leary DDM, Stanfield BB (1984) Regressive events in neurogenesis. Science 225:1258–1265

    Google Scholar 

  • Creek KE, Sly WS (1984) The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes. In: Dingle JT, Dean RT, Sly W (eds) Lysosomes in biology and pathology, vol 7. Elsevier, Amsterdam New York Oxford, pp 63–82

    Google Scholar 

  • Cunningham TJ (1982) Naturally occurring neuron death and its regulation by developing neural pathways. Int Rev Cytol 74:163–186

    Google Scholar 

  • Decker RS (1974) Lysosomal packaging in differentiating and degenerating anuran lateral motor column neurons. J Cell Biol 61:599–612

    Google Scholar 

  • Decker RS (1976) Influence of thyroid hormones on neuronal death and differentiation in larval Rana pipiens. Dev Biol 49:101–118

    Google Scholar 

  • Decker RS (1978) Retrograde responses of developing lateral motor column neurons. J Comp Neurol 180:635–660

    Google Scholar 

  • De Duve C (1957) Les lysosomes: un nouveau groupe de granules cytoplasmiques. J Physiol (Paris) 49:113–115

    Google Scholar 

  • De Duve C (1958) Les lysosomes. Bull Acad R Méd Belgique, 6e série, 23:608–618

    Google Scholar 

  • De Duve C (1963) The lysosome concept. In: Reuck AVS, Camerson MP (eds) Lysosomes, J & A Churchill Ltd, London, pp 1–35

    Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Google Scholar 

  • De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60:604–617

    Google Scholar 

  • Duprat AM (1969) Action de la cycloheximide sur des cellules embryonnaires d'amphibien en cours de différenciation — etude comparative avec les effects de la puromycine. Ann Embryol Morphol 2:179–190

    Google Scholar 

  • Duvall E, Wyllie AH, Morris RG (1985) Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351–358

    Google Scholar 

  • Ericsson JLE (1969) Mechanism of cellular autophagy. In: Dingle JT, Fell HB (eds) Lysosomes in Biology and Pathology, vol 2. North Holland, Amsterdam, pp 345–394

    Google Scholar 

  • Farbman AI (1968) Electron microscopic study of palate fusion in mouse embryos. Dev Biol 18:93–116

    Google Scholar 

  • Finlay BL, Pallas SL (1989) Control of cell number in the developing mammalian visual system. Prog Neurobiol 32:207–234

    Google Scholar 

  • Flanagan AEH (1969) Differentiation and degeneration in the motor column of foetal mouse. J Morphol 129:281–305

    Google Scholar 

  • Fox GQ, Kirk C, Richardson GP (1988) An ultrastructural analysis of electromotor cell death in Torpedo marmorata and its counterpart in vitro. Cell Tissue Res 254:455–464

    Google Scholar 

  • Fox H (1970) Tissue degeneration: an electron microscopic study of the pronephros of Rana temporaria. J Embryol Exp Morphol 24:139–157

    Google Scholar 

  • Fox H (1972a) Tissue degeneration: an electron microscope study of the tail skin of Rana temporaria during metamorphosis. Arch Biol (Liège) 83:373–394

    Google Scholar 

  • Fox H (1972b) Sub-dermal and notochordal collagen degeneration in the tail of Rana temporaria: an electron microscopic study. Arch Biol (Liège) 83:395–405

    Google Scholar 

  • Fox H (1972c) Muscle degeneration in the tail of Rana temporaria larvae at metamorphic climax: an electron microscopic study. Arch Biol (Liège) 83:407–417

    Google Scholar 

  • Fox H (1973a) Degeneration of the tail notochord of Rana temporaria at metamorphic climax. Examination by electron microscopy. Z Zellforsch Mikrosk Anat 138:371–386

    Google Scholar 

  • Fox H (1973b) Degeneration of the nerve cord in the tail of Rana temporaria during metamorphic climax: a study by electron microscopy. J Embryol Exp Morphol 30:377–396

    Google Scholar 

  • Fox H (1974) The epidermis and its degeneration in the larval tail and adult body of Rana temporaria and Xenopus laevis (Amphibia: Anura). J Zool Lond 174:217–235

    Google Scholar 

  • Fox H (1975) Aspects of tail muscle ultrastructure and its degeneration in Rana temporaria. J Embryol Exp Morphol 34:191–207

    Google Scholar 

  • Fox H (1977a) The anuran tadpole skin: changes occurring in it during metamorphosis and some comparisons with that of the adult. In: Spearman RIC (ed) Comparative anatomy of the skin. Academic Press London, Symp Zool Soc Lond 39:269–289

  • Fox H (1977b) A consideration of tail constituents in larvae of Rana temporaria: skin and muscle, an ultrastructural study. In: Raynaud AA (ed) Mécanismes de la rudimentation des organes chez les embryons de vertébrés. Colloq Int CNRS 266:93–112

  • Giorgi F, Deri P (1976) Cell death in ovarian chambers of Drosophila melanogaster. J Embryol Exp Morphol 35:521–533

    Google Scholar 

  • Glaumann H, Ericsson JLE, Marzella L (1981) Mechanisms of intralysosomal degradation with special reference to autophagocytosis and heterophagocytosis of cell organelles. Int Rev Cytol 73:149–182

    Google Scholar 

  • Glücksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59–86

    Google Scholar 

  • Goedert M, Otten U, Schäfer T, Schwab M, Thoenen H (1980) Immunosympathectomy: Lack of evidence for a complementmediated cytotoxic mechanism. Brain Res 201:399–409

    Google Scholar 

  • Groscurth P (1989) Cytotoxic effector cells of the immune system. Anat Embryol 180:109–119

    Google Scholar 

  • Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160:535–546

    Google Scholar 

  • Hamburger V, Oppenheim RW (1982) Naturally occurring neuronal death in vertebrates. Neurosci Comment 1:39–55

    Google Scholar 

  • Harmon B, Bell L, Williams L (1984) An ultrastructural study on the “meconium corpuscles” in rat foetal intestinal epithelium with particular reference to apoptosis. Anat Embryol 169:119–124

    Google Scholar 

  • Harrison JD, Borgers M, Thoné F (1979) Some observations on the phosphatase cytochemistry of the submandibular gland of cat. Histochem J 11:311–320

    Google Scholar 

  • Hickman S, Neufeld EF (1972) A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes. Biochem Biophys Res Commun 49:992–997

    Google Scholar 

  • Hinchliffe JR (1981) Cell death in embryogenesis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, London, pp 35–69

    Google Scholar 

  • Hinchliffe JR (1982) Cell death in vertebrate limb morphogenesis. In: Harrison RJ, Navaratnam V (eds) Progress in anatomy. Cambridge University Press, Cambridge, vol 2, pp 1–17

    Google Scholar 

  • Hinchliffe JR, Griffiths PJ (1984) Experimental analysis of the control of cell death in chick limb bud development. In: Davies I, Sigee DC (eds) Cell ageing and cell death. Soc Exp Biol Seminar Series Vol 25. Cambridge University Press, Cambridge, London, pp 223–242

    Google Scholar 

  • Hinrichsen CFL, Stevens GS (1974) Epithelial morphology during closure of the secondary palate in the rat. Arch Oral Biol 19:969–980

    Google Scholar 

  • Hoefsmit ECM, Eestermans IL, Korn C, Van Duijn P (1985) False localization of acid phosphatase activity in the nuclear envelope and endoplasmic reticulum of peritoneal macrophages. Histochem J 17:235–241

    Google Scholar 

  • Holtfreter J (1945) Neuralization and epidermization of gastrula ectoderm. J Exp Zool 98:161–209

    Google Scholar 

  • Holtzman E (1976) Lysosomes: A survey. Cell biology monographs, vol 3. Springer, Vienna New York

    Google Scholar 

  • Hornung JP, Koppel H, Clarke PGH (1989) Endocytosis and autophagy in dying neurons: An ultrastructural study in chick embryos. J Comp Neurol 283:425–437

    Google Scholar 

  • Hourdry J (1977a) Cytological and cytochemical changes in the intestinal epithelium during anuran metamorphosis. Int Rev Cytol Suppl 5:337–385

    Google Scholar 

  • Hourdry J (1977b) La dégénérescence de l'épithélium intestinal chez la larve d'anoure en métamorphose. Colloques CNRS 266, Paris, pp 125–136

    Google Scholar 

  • Hruban Z, Swift H, Wissler R (1962) Analog-induced inclusions in pancreatic acinar cells. J Ultrastruct Res 7:273–285

    Google Scholar 

  • Humbert W (1978) Intracellular and intramitochondrial binding of lanthanum in dark degenerating midgut cells of a collembolan (insect). Histochemistry 59:117–128

    Google Scholar 

  • Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglia cells to form a regular away in the plexiform layers. J Cell Biol 97:253–257

    Google Scholar 

  • Hurle JM (1988) Cell death in developing systems. Methods Achiev Exp Pathol 13:55–86

    Google Scholar 

  • Hurle J, Hinchliffe JR (1978) Cell death in the posterior necrotic zone (PNZ) of the chick wing-bud: a Stereoscan and ultrastructural survey of autolysis and cell fragmentation. J Embryol Exp Morphol 43:123–136

    Google Scholar 

  • Hurle JM, Lafarga M, Ojeda JL (1977) Cytological and cytochemical studies of the necrotic area of the bulbus of the chick embryo heart. J Embryol Exp Morphol 41:161–173

    Google Scholar 

  • Innocenti GM (1981) Transitory structures as substrate for developmental plasticity of the brain. Developments in Neuroscience, vol 13. Elsevier, North Holland, Amsterdam New York Oxford, pp 305–333

    Google Scholar 

  • Jimbow K, Szabo G, Fitzpatrick TB (1974) Ultrastructural investigation of autophagocytosis of melanosomes and programmed death of melanocytes in White Leghorn feathers: a study of morphogenetic events leading to hypomelanosis. Dev Biol 36:8–23

    Google Scholar 

  • Jones GW, Bowen ID (1979) The fine structural localization of acid phosphatase in pore cells of embryonic and newly hatched Deroceras reticulatum (Pulmonata: Stylommatophora. Cell Tissue Res 204:253–265

    Google Scholar 

  • Jones GW, Davis WL, Vinson SB (1982) A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant. J Histochem Cytochem 30:293–304

    Google Scholar 

  • Jurand A (1965) Ultrastructural aspects of early development of the forelimb buds in the chick and the mouse. Proc R Soc London Ser B 162:387–405

    Google Scholar 

  • Jurand A, Pavan C (1975) Ultrastructural aspects of histolytic processes in the salivary gland cells during metamorphic stages in Rhynchosciara hollaenderi (Diptera, Sciaridae). Cell Differ 4:219–236

    Google Scholar 

  • Kerr JFR (1965) A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes. J Pathol Bacteriol 90:419–455

    Google Scholar 

  • Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Kerr JFR, Harmon B, Searle J (1974) An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibres. J Cell Sci 14:571–585

    Google Scholar 

  • Kerr JFR, Searle J, Harmon BV, Bishop CJ (1987) Apoptosis. In: Potten CS (ed) Perspectives on mammalian cell death. Oxford University Press, Oxford, pp 93–128

    Google Scholar 

  • Kieny M, Sengel P (1974) La nécrose morphogène interdigitale chez l'embryon de poulet: effet de la cytochalasine B. Année Biol 13:57–68

    Google Scholar 

  • Koike T, Martin DP, Johnson EM Jr (1989) Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: Evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 86:6421–6425

    Google Scholar 

  • Kömüves LG, Sass M, Kovács J (1985) Autophagocytosis in the larval midgut cells of Pieris brassicae during metamorphosis. Cell Tissue Res 240:215–221

    Google Scholar 

  • Koppel H, Lewis PD, Patel AJ (1983) Cell death in the external granular layer of normal and undernourished rats: further observations, including estimates of rate of cell loss. Cell Tissue Kinet 16:99–106

    Google Scholar 

  • Kovács J, Réz G (1979) Autophagocytosis. Acta Biol Hung 30:177–199

    Google Scholar 

  • Krstić R, Pexieder T (1972) Elektronenmikroskopische Darstellung des Zelluntergangs in den Herzbulbuswülsten des Hühnerembryos. Acta Anat (Basel) 82:470

    Google Scholar 

  • Krstić R, Pexieder T (1973) Ultrastructure of cell death in bulbar cushions of chick embryo heart. Z Anat Entwickl-Gesch 140:337–350

    Google Scholar 

  • Lamb AH (1984) Motoneuron death in the embryo. CRC Crit Rev Clin Neurobiol 1:141–179

    Google Scholar 

  • Lamborghini JE (1987) Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J Comp Neurol 264:47–55

    Google Scholar 

  • Levi-Montalcini R (1950) The origin and development of the visceral system in the spinal cord of the chick embryo. J Morphol 86:253–283

    Google Scholar 

  • Levi-Montalcini R, Aloe L (1981) Mechanism(s) of action of nerve growth factor in intact and lethally injured sympathetic nerve cells in neonatal rodents. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman & Hall, London, pp 295–327

    Google Scholar 

  • Levi-Montalcini R, Angeletti PU (1966) Immunosympathectomy. Pharmacol Rev 18:619–628

    Google Scholar 

  • Lockshin RA (1981) Cell death in metamorphosis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman & Hall, London, pp 79–121

    Google Scholar 

  • Lockshin RA, Beaulaton J (1974) Programmed cell death. Life Sci 15:1549–1565

    Google Scholar 

  • Lockshin RA, Zakeri-Milovanovic Z (1984) Nucleic acids in cell death. In: Davies I, Sigee DC (eds) Cell ageing and cell death Cambridge University Press, Cambridge, pp 243–268

    Google Scholar 

  • Manasek FJ (1969) Myocardial cell death in the embryonic chick ventricle. J Embryol Exp Morphol 21:271–284

    Google Scholar 

  • Marovitz WF, Shugar JMA, Khan KM (1976) The role of cellular degeneration in the normal development of (rat) otocyst. Laryngoscope 86:1413–1425

    Google Scholar 

  • Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM Jr (1988) Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 106:829–844

    Google Scholar 

  • Matsuura S, Morimoto T, Nagata S, Tashiro Y (1968) Studies on the posterior silk gland of the silkworm, Bombyx mori. II. Cytolytic processes in posterior silk gland cells during metamorphosis from larva to pupa. J Cell Biol 38:589–603

    Google Scholar 

  • Mego JL (1973) Protein digestion in isolated heterolysosomes. In: Dingle JT (ed) Lysosomes in biology and pathology, vol 3. North-Holland Publishing, Amsterdam, pp 138–168

    Google Scholar 

  • Michaels JE, Albright JT, Patt DI (1971) Fine structural observations on cell death in the epidermis of the external gills of the larval frog, Rana pipiens. Am J Anat 132:301–318

    Google Scholar 

  • Milaire J, Rooze M (1983) Hereditary and induced modifications of the normal necrotic patterns in the developing limb buds of the rat and mouse: facts and hypothesis. Arch Biol (Bruxelles) 94:459–490

    Google Scholar 

  • Monzon M, Yanes CM, Trujillo CM, Marrero A (1987) Cell death in the normal development of Gallotia galloti mesencephalon (Reptilia Lacertidae). An ultrastructural study. J Submicrosc Cytol 19:71–76

    Google Scholar 

  • Morris RG, Hangreaves AD, Duvall E, Wyllie AH (1984) Hormone-induced cell death. 2. Surface changes in thymocytes undergoing apoptosis. Am J Path 115:426–436

    Google Scholar 

  • Mottet NK, Hammar SP (1972) Ribosome crystals in necrotizing cells from the posterior necrotic zone of the developing chick limb. J Cell Sci 11:403–414

    Google Scholar 

  • Napolitano L (1963) Cytoplasmic bodies containing mitochondria, ribosomes, and rough surfaced endoplasmic reticulum in the small intestine of new born rats. J Cell Biol 18:478–481

    Google Scholar 

  • Navascués J, Martin-Partido G, Alvarez IS, Rodriguez-Gallardo L (1988) Cell death in suboptic necrotic centers of chick embryo diencephalon and their topographic relationship with the earliest optic fibre fascicles. J Comp Neurol 278:34–46

    Google Scholar 

  • Novikoff AB, Shin WY (1964) The endoplasmic reticulum in the Golgi zone and its relations to microbodies, Golgi apparatus, and autophagic vacuoles in rat liver cells. J Microsc 3:187–206

    Google Scholar 

  • Nussdorfer GG (1970) The fine structure of the newborn rat adrenal cortex II. Zona juxtamedullaris. Z Zellforsch 103:398–409

    Google Scholar 

  • O'Connor TM, Wyttenbach CR (1974) Cell death in the embryonic chick spinal cord. J Cell Biol 60:448–459

    Google Scholar 

  • Oppenheim RW (1981) Neuronal cell death and some related regressive phenomena during neurogenesis: a selective historical review and progress report. In: Cowan WM (ed) Studies in developmental neurobiology: essays in honor of Viktor Hamburger. Oxford University Press, New York, pp 74–133

    Google Scholar 

  • Oppenheim RW (1985) Naturally occurring cell death during neural development. Trends Neurosci 8:487–493

    Google Scholar 

  • Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. Trends Pharmacol Sci 10:281–285

    Google Scholar 

  • Osinchak J (1966) Ultrastructural localization of some phosphatases in the prothoracic gland of the insect Leucophaea maderae. Z Zellforsch 72:236–248

    Google Scholar 

  • Pannese E (1976) An electron microscopic study of cell degeneration in chick embryo spinal ganglia. Neuropathol Appl Neurobiol 2:247–267

    Google Scholar 

  • Pannese E, Luciano L, Iurato S, Reale E (1976) Lysosomes in normal and degenerating neuroblasts of the chick embryo spinal ganglia. Acta Neuropathol (Berl) 36:209–220

    Google Scholar 

  • Pautou M, Kieny M (1971) Sur les mécanismes histologiques et cytologiques de la necrose morphogène interdigitale chez l'embryon de poulet. CR Acad Sci (Paris) Ser D 272:2025–2028

    Google Scholar 

  • Payen G (1972) Etude ultrastructurale de la dégénérescence cellulaire dans la glande androgène du Crabe Ocypode quadrata (Fabricius). Z Zellforsch 129:370–385

    Google Scholar 

  • Peluso JJ, England-Charlesworth C, Bolender DL, Steger RW (1980) Ultrastructural alterations associated with the initiation of follicular atresia. Cell Tissue Res 211:105–115

    Google Scholar 

  • Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326

    Google Scholar 

  • Pexieder T (1972) The tissue dynamics of heart morphogenesis. I. The cell death phenomena. A. Identification and morphology. Z Anat Entwickl-Gesch 137:270–284

    Google Scholar 

  • Philippe E, Garosi M, Droz B (1988) Influence of peripheral and central targets on subpopulations of sensory neurons expressing calbindin immunoreactivity in the dorsal root ganglion of the chick embryo. Neuroscience 26:225–232

    Google Scholar 

  • Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68:339–356

    Google Scholar 

  • Pontremoli S, Melloni E, Horecker BL (1984) Limited proteolysis of cytosolic enzymes by lysosomal proteinases accessible to the cytosol. In: Dingle JT, Dean RT, Sly W (eds) Lysosomes in biology and pathology, vol 7. Elsevier, Amsterdam New York Oxford, pp 141–161

    Google Scholar 

  • Pratt RM, Greene RM (1976) Inhibition of palatal epithelial cell death by altered protein synthesis. Dev Biol 54:135–145

    Google Scholar 

  • Provis JM, Penfold PL (1988) Cell death and the elimination of retinal axons during development. Prog Neurobiol 31:331–347

    Google Scholar 

  • Rasch EM, Gawlik S (1964) Cytolysosomes in tissues of metamorphosing sciarid larvae. J Cell Biol 23:123A

    Google Scholar 

  • Sabatini MT, De Iraldi AP, De Robertis E (1965) Early effects of the antiserum (AS) of the nerve growth factor (NGF) on the structure of sympathetic neurons. J Exp Neurol 12:370–383

    Google Scholar 

  • Salzgeber B, Weber R (1966) Le régression du mésonéphros chez l'embryon de poulet. Etude des activités de la phosphatase acide et des cathepsines. Analyse biochimique, histochimique et observations au microscope électronique. J Embryol Exp Morphol 15:397–419

    Google Scholar 

  • Schanne FAX, Kane AB, Young EE, Farber JL (1979) Calcium dependence of toxic cell death: A final common pathway. Science 206:700–702

    Google Scholar 

  • Scharrer B (1966) Ultrastructural study of the regressing prothoracic glands of blattarian insects. Z Zellforsch 69:1–21

    Google Scholar 

  • Scheib D (1962) Les lysosomes et leurs roles dans quelques phénomènes biologiques. Année Biol 1:35–52

    Google Scholar 

  • Scheib D (1963) Properties and role of acid hydrolases of the Müllerian ducts during sexual differentiation in the male chick embryo. In: de Reuck AVS, Cameron MP (eds) Lysosomes. Ciba Foundation Symposium, Churchill, London, pp 264–277

    Google Scholar 

  • Scheib D (1965a) Structure fine du canal de Müller de l'embryon de Poulet: lésions cytoplasmiques du canal mâle en régression. CR Acad Sci (Paris) 260:1252–1254

    Google Scholar 

  • Scheib D (1965b) Sur la régression du canal de Müller mâle de l'embryon de poulet: localisation de la phosphatase acide au microscope électronique. CR Acad Sci (Paris) Ser D 261:5219–5221

    Google Scholar 

  • Scheib D (1977) Mécanismes cellulaires et déterminisme hormonal de la régression des canaux de Müller chez l'embryon de poulet: étude cytologique et biochemique. In: Mécanismes de la rudimentation des organes chez les embryons de vertébrés. Colloques CNRS 266, Paris, pp 59–70

  • Scheib-Pfleger D, Wattiaux R (1962) Etude des hydrolases acides des canaux de Müller de l'embryon de poulet. Activités totales et solubles des canaux d'embryons de 8 à 10 jours d'incubation. Dev Biol 5:205–217

    Google Scholar 

  • Schin KS, Clever U (1965) Lysosomal and free acid phosphatase in salivary glands of Chironomus tentans. Science 150:1053–1055

    Google Scholar 

  • Schin KS, Clever U (1968) Ultrastructural and cytochemical studies of salivary gland regression in Chironomus tentans. Z Zellforsch 86:262–279

    Google Scholar 

  • Schweichel JU (1972) Das elektronenmikroskopische Bild des Abbaues der epithelialen Scheitelleiste während der Extremitätenentwicklung bei Rattenfeten. Z Anat Entwickl-Gesch 136:192–203

    Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Google Scholar 

  • Seinsch W, Schweichel JU (1974) Physiologic cell necrosis during the early development of muscles of the back in embryonic mice. Z Anat Entw Gesch 245:101–112

    Google Scholar 

  • Sengelaub DR, Jacobs LF, Finlay BL (1985) Regional differences in normally occurring cell death in the developing hamster lateral geniculate nuclei. Neurosci Lett 55:103–108

    Google Scholar 

  • Shepherd V, Schlesinger P, Stahl P (1983) Receptors for lysosomal enzymes and glycoproteins. Curr Top Membranes Trans 18:317–338

    Google Scholar 

  • Skudlarek MD, Novak EK, Swank RT (1984) Processing of lysosomal enzymes in macrophages and kidney. In: Dingle JT, Dean RT, Sly W (eds) Lysosomes in biology and pathology, vol 7. Elsevier, Amsterdam New York Oxford, pp 17–43

    Google Scholar 

  • Smiley GR, Dixon AD (1968) Fine structure of midline epithelium in developing palate of the mouse. Anat Rec 161:293–310

    Google Scholar 

  • Soberman RJ, Hoffstein S, Weissman G (1973) Direct evidence for suicide sac hypothesis of lysosomal enzyme release by monosodium urate. Arthritis Rheum 16:132–133

    Google Scholar 

  • Sohal GS, Weidman T (1978) Ultrastructural sequence of embryonic cell death in normal and peripherally deprived trochlear nucleus. Exp Neurol 61:53–64

    Google Scholar 

  • Stéphan-Dubois F, Lanot R, Bautz A-M (1974) Aspects structuraux des dégénérescences cellulaires aux cours des processus morphogénétiques. Année Biol 13:27–34

    Google Scholar 

  • Stocker RF, Edwards JS, Truman JW (1978) Fine structure of degenerating moth abdominal motor neurons after eclosion. Cell Tissue Res 191:317–331

    Google Scholar 

  • Sulston JE, Albertson DG, Thomson JN (1980) The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Dev Biol 78:542–576

    Google Scholar 

  • Thoenen H, Barde Y-A, Davies AM, Johnson JE (1987) Neurotrophic factors and neuronal death. In: Bock G, O'Connor M (eds) Selective neuronal death. Ciba Foundation Symposium 126. Wiley, Chichester, pp 82–95

    Google Scholar 

  • Truman JW (1987) The insect nervous system as a model system for the study of neuronal death. Curr Top Dev Biol 21:99–116

    Google Scholar 

  • Trump BF, Berezesky IK (1985) Cellular ion regulation and disease: A hypothesis. Curr Top Membranes Trans 25:279–319

    Google Scholar 

  • Trump BF, Mergner WJ (1974) Cell injury. In: Zweifach BW, Grant L, McCluskey RT (eds) The inflammatory process. Academic Press, New York, pp 115–257

    Google Scholar 

  • Ucker DS (1987) Cytotoxic T lymphocytes and glucocorticoids activate an endogenous suicide process in target cells. Nature 327:62–54

    Google Scholar 

  • Wahnschaffe U, Bartsch U, Fritzsch B (1987) Metamorphic changes within the lateral-line system of Anura. Anat Embryol 175:431–442

    Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    CAS  PubMed  Google Scholar 

  • Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman & Hall, New York, pp 9–34

    Google Scholar 

  • Wyllie AH, Morris RG (1982) Hormone-induced cell death. Purification and properties of thymocytes undergoing apoptosis after glucocorticoid treatment. Am J Pathol 109:78–87

    Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1973) Cell death in the normal neonatal rat adrenal cortex. J Pathol 111:255–261

    Google Scholar 

  • Wyllie AH, Duvall E, Blow JJ (1984a) Intracellular mechanisms in cell death in normal and pathological tissues. In: Davies I, Sigee DC (eds) Cell ageing and cell death. Cambridge University Press, Cambridge, pp 269–294

    Google Scholar 

  • Wyllie AH, Morris RG, Smith AL, Dunlop D (1984b) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:67–78

    CAS  PubMed  Google Scholar 

  • Yamada T, Ohyama H, Kinjo Y, Watanabe M (1981) Evidence for the internucleosomal breakage of chromatin in rat thymocytes irradiated in vitro. Radiat Res 85:544–553

    Google Scholar 

  • Young RW (1984) Cell death during differentiation of the retina in the mouse. J Comp Neurol 229:362–373

    Google Scholar 

  • Zhivotovsky BD, Zvonareva NB, Hanson KP (1981) Characteristics of rat thymus chromatin degradation products after whole body X-irradiation. Int J Radiat Biol 39:437–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, P.G.H. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181, 195–213 (1990). https://doi.org/10.1007/BF00174615

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00174615

Key words

Navigation