Skip to main content
Log in

A reassessment of mammalian αA-crystallin sequences using DNA sequencing: Implications for anthropoid affinities of tarsier

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

αA-crystallin, a major structural protein in the ocular lenses of all vertebrates, has been a valuable tool for molecular phylogenetic studies. This paper presents the complete sequence for human αA-crystallin derived from cDNA and genomic clones. The deduced amino acid sequence differs at two phylogenetically informative positions from that previously inferred from peptide composition. This led us to examine the same region of the αA-crystallin gene in 12 other mammalian species using direct sequencing of PCR-amplified genomic DNA. New sequences were added to the database, and corrections were made to all anthropoid sequences, defining clear synapomorphies for anthropoids as a clade distinct from prosimians. Within the anthropoids there are further synapomorphies delineating hominoids, Old World monkeys, and New World monkeys. Significantly, sequence revisions and the addition of new sequence for a prosimian, the sifaka, eliminate the previous support for the proposed anthropoid affinities of the tarsier inferred from αA-crystallin protein sequences. In addition, DNA sequences provide greater resolution of certain relationships. For example, although they are identical in protein sequence, comparison of DNA sequences clearly separates mouse and the common tree shrew, grouping the tree shrew closer to prosimians. These results show that adding DNA sequences to the existing αA-crystallin database can enhance its value in resolving phylogenetic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

U05569:

Genbank accession number for human CDNA sequence

U24057:

chimp

U24058:

Colobus

U24059:

capuchin

U24060:

elephant

024061:

rhesus

U24062:

sifaka

U24063:

Pteropus

U24064:

Tupaia

U24065:

Tonatia

U24066:

tarsier

U24067:

tamarin

U24068:

Galago

References

  • Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA 88:10317–10321

    Google Scholar 

  • Bailey WJ, Slightom JL, Goodman M (1992) Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ε-globin gene. Science 256:86–89

    Google Scholar 

  • Beard KC, Krishtalka L, Stocky RK (1991) First skulls of the early Eocene primate Shoshonius cooperi and the anthropoid-tarsier dichotomy. Nature 349:64–67

    Google Scholar 

  • Berman ER (1991) Perspectives in vision research: biochemistry of the eye, 1st ed. Plenum Press, New York

    Google Scholar 

  • Bloemendal H (ed) (1981) Molecular and cellular biology of the eye lens. Wiley, New York

    Google Scholar 

  • Caspers GJ, Pennings J, de Jong WW (1994) A partial cDNA sequence corrects the human alpha A crystallin primary structure. Exp Eye Res 54:125–126

    CAS  PubMed  Google Scholar 

  • Collins DW, Jukes TH (1994) Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics 20:386–396

    Google Scholar 

  • Culotta E (1992) A new take on anthropoid origins. Science 256:1216–1517

    Google Scholar 

  • Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1990) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher order taxa of Eutheria. In: Genoways HH (ed) Current mammalogy, vol 2. Plenum, New York, p 545

    Google Scholar 

  • Davis LG, Dibner MD, Battey JF (eds) (1986) Basic methods in molecular biology. Elsevier, New York

    Google Scholar 

  • de Jong WW (1981) Evolution of lens and crystallins. In: Bloemendal H (ed) Molecular and cellular biology of the eye lens. Wiley-Interscience, New York, p 221

    Google Scholar 

  • de Jong WW (1982) Eye lens proteins and vertebrate pbylogeny. In: Goodman M (ed) Macromolecular sequences in systematic and evolutionary biology. Plenum, New York, p 75

    Google Scholar 

  • de Jong WW (1985) Superordinal affinities of Rodentia studied by sequence analysis of eye lens protein. In: Luckett WP, Hartenberger J-L (eds) Evolutionary relationships among rodents: a multidisciplinary analysis. Plenum Publishing, New York, p 211

    Google Scholar 

  • de Jong WW, Goodman M (1982) Mammalian phylogeny studied by sequence analysis of the eye lens protein alpha-crystallin. Sonderdruck Z Saugetierkunde 47:257–276

    Article  PubMed  Google Scholar 

  • de Jong WW, Goodman M (1988) Anthropoid affinities of Tarsius supported by lens αA-crystallin sequences. J Hum Evol 17:575–582

    Google Scholar 

  • de Jong WW, Terwindt EC, Bloemendal H (1975a) The amino acid sequence of the A chain of human α-crystallin. FEBS Lett 58:310–313

    Google Scholar 

  • de Jong WW, van der Ouderaa FJ, Versteeg M, Groenewoud G, van Amelsvoort JM, bloemendal H (1975b) Primary structures of the α-Crystallin A chains of seven mammalian species. Eur J Biochem 53:237–242

    Google Scholar 

  • de Jong WW, Zweers A, Versteeg M, Nuy-Terwindt EC (1984) Primary structures of the alpha-crystallin A chains of twenty-eight mammalian species, chicken and frog. Eur J Biochem 141:131–140

    Google Scholar 

  • de Jong WW, Leunissen JAM, Voorter CEM (1993a) Evolution of the α-crystallin/small heat-shock protein family. Mol Biol Evol 10: 103–126

    Google Scholar 

  • de Jong WW, Leunissen JAM, Wistow GJ (1993b) Eye lens crystallins and the phylogeny of placental orders: evidence for a macroscelidpaenungulate clade? In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer Verlag, New York, p 5

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395

    CAS  PubMed  Google Scholar 

  • Goodman B (1991) Holy phylogeny! Did bats evolve twice? Science 253:36

    Google Scholar 

  • Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31:113–121

    Google Scholar 

  • Hay RE, Petrash JM (1987) Nucleotide sequence of a bovine lens alpha A-crystallin cDNA. Biochem Biophys Res Common 148:31–37

    Google Scholar 

  • Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644

    Google Scholar 

  • van den Heuvel R, Hendriks W, Quax W, Bloemendal H (1985) Complete structure of the hamster αA-crystallin gene. Reflection of an evolutionary history by means of exon shuffling. J Mol Biol 185: 273–284

    Google Scholar 

  • Jaworski CJ, Piatigorsky J (1989) A pseudo-exon in the functional human αA-crystallin gene. Nature 337:752–754

    Google Scholar 

  • Jaworski CJ, Chepelinsky AB, Piatigorsky J (1991) The αA-crystallin gene: conserved features of the 5′-flanking regions in human, mouse, and chicken. J Mol Evol 33:495–505

    Google Scholar 

  • Kanehisa M (1988) IDEAS-88: integrated database and extended analysis system for nucleic acids and proteins. Frederick Cancer Research Facility, Frederick, MD

    Google Scholar 

  • King CR, Piatigorsky J (1983) Alternative RNA splicing of the murine alpha A-crystallin gene: protein-coding information within an intron. Cell 32:707–712

    Google Scholar 

  • King CR, Shinohara T, Piatigorsky J (1982) αA-Crystallin messenger RNA of the mouse lens: more noncoding than coding sequences. Science 215:985–987

    Google Scholar 

  • Koop BF, Tagle DA, Goodman M, Slightom JL (1989) A molecular view of primate phylogeny and important systematic and evolutionary questions. Mol Biol Evol 6:580–612

    Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    CAS  PubMed  Google Scholar 

  • Kunkel TA, Eckert KA (1989) Fidelity of DNA polymerases used in polymerase chain reactions. In: Erlich HA, Gibbs R, Kazazian HH Jr (eds) Polymerase chain reaction. Current communications in molecular biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 5

    Google Scholar 

  • Martin RD (1986) Are fruit bats primates? (news and views). Nature 320:482–483

    Google Scholar 

  • Martin RD (1960a) Are tree-shrews primates? In: Primate origins and evolution. A phylogenetic reconstruction, 1st ed. Princeton University Press, Princeton, p 191

    Google Scholar 

  • Martin RD (1990b) A provisional synthesis. In: Primate origins and evolution. A phylogenetic reconstruction. Princeton University Press, Princeton

    Google Scholar 

  • McKenna MC (1992) The a crystallin A chain of the eye lens and mammalian phylogeny. Ann Zool Fennici 28:349–360

    CAS  Google Scholar 

  • Mindell DP, Dick CW, Baker RJ (1991) Phylogenetic relationships among megabats, microbats, and primates. Proc Natl Acad Sci USA 88:10322–10326

    Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In: Wu R (ed) Methods in enzymology, vol 155. Academic Press, San Diego, p 335

    Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool's guide to PCR, version 2.0. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu

    Google Scholar 

  • Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306

    Google Scholar 

  • Pettigrew JD, Jamieson BGM, Robson SK, Hall LS, McAnally KI, Cooper HM (1989) Phylogenetic relations between microbats, megabats and primates (Mammalia: chiroptera and primates). Philos Trans R Soc Land [Biol] 325:489–559

    Google Scholar 

  • Roquemore EP, Dell A, Morris HR, Panico M, Reason AJ, Savoy L-A, Wistow GJ, Zigler JS Jr, Earles BJ, Hart GW (1992) Vertebrate lens α-crystallins are modified by O-linked N-acetylglucosamine. J Biol Chem 267:555–563

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis K, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Stanhope MJ, Bailey WJ, Czelusniak JN, Goodman M, Si J-S, Nickerson J, Sgouros JG, Singer GA, Kleinschmidt TK (1993) A molecular view of primate supraordinal relationships from the analysis of both nucleotide and amino acid sequences. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective, chapter 8. Plenum Press, New York, p 251

    Google Scholar 

  • Stapel SO, Leunissen JA, Versteeg M, Wattel J, de Jong WW (1984) Ratites as oldest offshoot of avian stem-evidence from α-crystallin A sequences. Nature 311:257–259

    Google Scholar 

  • Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign

  • Takemoto L, Emmons T (1991) Truncation of αA-crystallin from the human lens. Exp Eye Res 53:811–813

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thompson MA, Hawkins JW, Piatigorsky J (1987) Complete nucleotide sequence of the chicken αA-crystallin gene and its 5′ flanking region. Gene 56:173–184

    Google Scholar 

  • Wheeler WC (1992) Extinction, sampling, and molecular phylogenetics. In: Novacek MJ, Wheeler QD (eds) Extinction and phylogeny, chapter 7. Columbia University Press, New York p 205

    Google Scholar 

  • Wistow G (1993) Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18:301–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaworski, C.J. A reassessment of mammalian αA-crystallin sequences using DNA sequencing: Implications for anthropoid affinities of tarsier. J Mol Evol 41, 901–908 (1995). https://doi.org/10.1007/BF00173170

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00173170

Key words

Navigation