Skip to main content
Log in

A note on the statistical properties of animal locations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A statistical model of the successive locations of an animal in the plane induces a statistical model of the relative positions of successive locations. A common locational model is that the Cartesian coordinates of successive locations in the plane are independent bivariate normal random variables. This note gives the statistical properties of the direction and length of the vector joining successive locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, L., Davis, S. D.: The internal anatomy of home range. J. Mammalogy 48, 529–536 (1967)

    Google Scholar 

  • Anderson, D. L.: The home range: A new nonparametric estimation technique. Ecology 63, 103–112 (1982)

    Google Scholar 

  • Broadbent, S. R., Kendall, D. G.: The random walk of Trichostrongylus retortaeformis. Biometrics 9, 460–466 (1953)

    Google Scholar 

  • Burt, W. H.: Territoriality and home range concepts as applied to mammals. J. Mammalogy 24, 356–364 (1943)

    Google Scholar 

  • Don, B. A. C., Rennolls, K.: A home range model incorporating biological attraction points. J. Anim. Ecol. 52, 69–81 (1983)

    Google Scholar 

  • Dunn, J. E., Gipson, P. S.: Analysis of radio telemetry data in studies of home range. Biometrics 33, 85–101 (1977)

    Google Scholar 

  • Gradshteyn, I. S., Ryzhik, I. M.: Table of integrals, series, and products. London: Academic Press 1980

    Google Scholar 

  • Hawes, M. L.: Home range, territoriality, and ecological separation in sympatric shrews. Sorex vagrans and Sorex obscurus. J. Mammalogy 58, 354–367 (1977)

    Google Scholar 

  • Hayne, D. W.: Calculation of size of home range. J. Mammalogy 30, 1–18 (1949)

    Google Scholar 

  • Hogg, R. V., Craig, A. T.: Introduction to mathematical statistics. New York: Macmillan 1978

    Google Scholar 

  • Kareiva, P.: Experimental and mathematical analyses of herbivore movement: quantifying the influence of plant spacing and quality on foraging discrimination. Ecol. Monographs 53, 261–282 (1982)

    Google Scholar 

  • Mardia, K. V.: Statistics of directional data. London: Academic Press 1972

    Google Scholar 

  • Scheuer, E. M.: Moments of the radial error. J. Stat. Assoc. 57, 187–190 (1962)

    Google Scholar 

  • Schoener, T. W.: An empirically based estimate of home range. Theor. Popul. Biol. 20, 281–325 (1981)

    Google Scholar 

  • Siniff, D., Jessen, C.: A simulation model of animal movement patterns. Adv. Ecol. Res. 6, 185–219 (1969)

    Google Scholar 

  • Solomon, H., Stephens, M. A.: Distribution of a sum of weighted chi-squared variables. J. Am. Stat. Assoc. 72, 881–885 (1977)

    Google Scholar 

  • Swihart, R. K., Slade, N. A.: Testing for independence of observations in animal movements. Ecology 66, 1176–1184 (1985)

    Google Scholar 

  • Weil, H.: The distribution of radial error. Ann. Math. Stat. 25, 168–170 (1954)

    Google Scholar 

  • Worton, B. J.: A review of models of home range for animal movement. Ecol. Modelling 38, 277–298 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solow, A.R. A note on the statistical properties of animal locations. J. Math. Biol. 29, 189–193 (1990). https://doi.org/10.1007/BF00168178

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168178

Key words

Navigation