Skip to main content
Log in

The velocity of spatial population expansion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider the velocity with which an invading population spreads over space. For a general linear model, originally due to Diekmann and Thieme, it is shown that the asymptotic velocity of population expansion can be calculated if information is available on: (i) the net-reproduction, R o; i.e. the expected number of offspring produced by one individual throughout its life, and (ii) the (normalized) reproduction-and-dispersal kernel, β(a, χ − ξ); i.e. the density of newborns produced per unit of time at position χ by an individual of age a born at ξ By means of numerical examples we study the effect of the net-reproduction and the shape of the reproduction-and-dispersal kernel on the velocity of population expansion. The reproduction-and-dispersal kernel is difficult to measure in full. This leads us to derive approximation formulas in terms of easily measurable parameters. The relation between the velocity of population expansion calculated from the general model and that from the Fisher/Skellam diffusion model is discussed. As a final step we use the model to analyse some real-life examples, thus showing how it can be put to work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ammerman, A. J., Cavalli-Sforza, L. L.: The neolithic transition and the genetics of populations in Europe. Princeton University Press 1984.

  • Anderson, R. M. (ed.): Population dynamics of infectious diseases. Theory and applications. London: Chapman and Hall 1982.

    Google Scholar 

  • Andow, D. A., Kareiva, P. M., Levin, S. A., Okubo, A.: Spread of invading organisms: patterns of spread. In: Kim, K. C. (ed.) Evolution of insect pests: the pattern of variations. New York: Wiley.

  • Andow, D. A., Kareiva, P. M., Levin, S. A., Okubo, A.: Spread of invading organisms, submitted.

  • Andral, L., Artois, M., Aubert, M. F. A., Blancou, J.: Radio-pistage de renards enrages. Comp. Immunol. Microbiol. Infect. Diseases 5, 284–291 (1982).

    Google Scholar 

  • Andral, L., Toma, B.: La rage en France en 1976. Rec. Med. vet. 153, 503–508 (1977).

    Google Scholar 

  • Anonymous: Ecology of biological invasions. SCOPE Newsletter 23, 1–5 (1985).

  • Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Goldstein, J. A. (ed.) Partial differential equations and related topics. (Lect. Notes Math., vol. 446, pp. 5–49) Berlin Heidelberg New York: Springer 1975.

    Google Scholar 

  • Aronson, D. G., Weinberger, H. F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978).

    Google Scholar 

  • Artimo, A.: The dispersal and the acclimatisation of the muskrat Ondatra zibetica (L.), in Finland. Papers on game research 21, 1–101 (1960).

    Google Scholar 

  • Bacon, P. J. (ed.): Population dynamics of rabies in wildlife. New York: Academic Press 1985.

    Google Scholar 

  • Ball, F. G.: Some statistical problems in the epidemiology of fox rabies. Thesis 1981, University of Nottingham.

  • Becker, K.: Populationsstudien an Bismratten (Ondatra zibethica L.) I Zoologische Beitrage 13, 369–396 (1967).

    Google Scholar 

  • Berger, J.: Model of rabies control. In: Berger, J., Buhler, W., Repges, R., Tautu, P. (eds.) Mathematical models in medicine. (Lest. Notes Biomath., vol. 11, pp. 75–88) Berlin Heidelberg New York: Springer 1976.

    Google Scholar 

  • Bögel, K., Moegle, H.: Characteristics of the spread of a wildlife rabies epidemic in Europe. Biogeographica 8, 251–258 (1980).

    Google Scholar 

  • Bramson, M.: Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44, 190 (1983).

    Google Scholar 

  • Broadbent, S. R., Kendall, D. G.: The random walk of Trichostrongylus retortaeformis. Biometrika 9, 460–465 (1953).

    Google Scholar 

  • Browning, J. A., Frey, K. J.: Multiline cultivars as a means of disease control. Annu. Rev. Phytopathol. 7, 355–382 (1969).

    Google Scholar 

  • Caughley, G.: Liberation, dispersal and distribution of Himalayas Thar (Hemitragus jemlahicus) in New Zealand. New Zealand J. Sci. 13, 220–239 (1970).

    Google Scholar 

  • Creegan, P., Lui, R.: Some ramarks about the wave speed and travelling wave solutions of a nonlinear integral generator. J. Math. Biol. 20, 59–68 (1984).

    Google Scholar 

  • Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 6, 109–130 (1978).

    Google Scholar 

  • Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Differ. Equations 33, 58–73 (1979).

    Google Scholar 

  • Diekmann, O.: Dynamics in biomathematical perspective. In: Hazewinkel, M., Lenstra, J. K., Meertens, L. G. L. (eds.) Mathematics and computer sicence II. (CWI Monographs vol. 4, pp. 23–50) 1986.

  • Diekmann, O., Temme, N. M.: Nonlinear diffusion problems. Amsterdam: Mathematical Centre 1976.

    Google Scholar 

  • Doude van Troostwijk, W. J.: The muskrat (Ondatra zibethicus L.) in the Netherlands, its ecological aspects and their consequences for man. Thesis, State University of Leiden.

  • Errington, P. L.: Muskrat populations. Iowa: Iowa State University.

  • Fisher, R. A.: The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).

    Google Scholar 

  • Hadeler, K. P., Rothe, F.: Travelling fronts in nonlinear diffusion equations. J. Math. Biol. 2, 251–263 (1975).

    Google Scholar 

  • Hengeveld, R.: Dynamics of biological invasions. London: Chapman and Hall 1989.

    Google Scholar 

  • Hoffman, M.: Die Bisamratte. Leipzig: Academische Verlagsgesellschaft 1958.

    Google Scholar 

  • Källen, A., Arcuri, P., Murray, J. D.: A simple model for the spatial spread and control of rabies. J. Theor. Biol. 116, 377–393 (1985).

    Google Scholar 

  • Kendall, M. G., Stuart, A.: The advanced theory of statistics, vol. I. London: Griffin 1958.

    Google Scholar 

  • Kendall, D. G.: Mathematical models of the spread of infection. In: Mathematics and computer sicence in biology and medicine (Medical Research Council, London, pp. 213–224) 1965.

    Google Scholar 

  • Keyfitz, N.: Introduction to the mathematics of population. Reading, Mass.: Addison Wesley 1968.

    Google Scholar 

  • Kolmogorov, A., Petrovsky, I., Piscounov, N.: Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique. Mosc, Univ. Math. Bull. 1, 1–25 (1937).

    Google Scholar 

  • Kornberg, H., Williamson, M. H.: Quantitative aspects of the ecology of biological invasions. London: Royal Society, 1987.

    Google Scholar 

  • Lambinet, D., Boisvieux, J. F., Mallet, A., Artois, M., Andral, L.: Modele mathématique de la propagation d'une épizootie de rage vulpine. Rev. Epidém. et Santé Publ. 26, 9–28 (1978).

    Google Scholar 

  • Levin, S. A.: Analysis of risk for invasions and control programs. In: Drake, J., Castri, F. di, Groves, R., Kruger, F., Mooney, H., Rejamenk, M., Williamson, M. (eds.) Biological invasions: a global perspective. Chichester: Wiley, in press.

  • Lloyd, H. G.: Wildlife rabies in Europe and the British situation. Trans. R. Soc. Trop. Med. Hyg. 70, 179–187 (1976).

    Google Scholar 

  • Lubina, J. A., Levin, S. A.: The spread of a reinvading species: Range expansion in the California Sea Otter. Am. Nat. 131, 526–543 (1988).

    Google Scholar 

  • MacDonald, D. W.: Rabies and wildlife. Oxford: Oxford University Press 1980.

    Google Scholar 

  • MacDonald, D. W., Bacon, P. J.: Fox society, contact rate and rabies epizootiology. Comp. Immunol. Microbiol. Infect. Dis. 5, 247–256 (1982).

    Google Scholar 

  • Mallach, N.: Markierungsversuche zur Analyse des Aktionsrau und der Ortsbewegungen des Bisams (Ondatra zibethica L.) Anzeiger für Schädlingskunde and Pflanzenschutz XLIV9, 129–136 (1971).

    Google Scholar 

  • Metz, J. A. J., Diekmann, O.: The dynamics of physiologically structured populations. (Lect. Notes Biomath., vol. 68) Berlin Heidelberg New York: Springer 1986.

    Google Scholar 

  • Minogue, K. P., Frey, W. E.: Models for the spread of disease: model description. Phytopathology 73, 1168–1173 (1983a).

    Google Scholar 

  • Minogue, K. P., Frey, W. E.: Models for the spread of plant disease: some experimental results. Phytophathology 73, 1173–1176 (1983b).

    Google Scholar 

  • Moens, R.: Etude bio-écologique du rat musqué en Belgique. Parasitica 34, 57–121 (1978).

    Google Scholar 

  • Mollison, D.: The rate of spatial propagation of simple epidemics. In: Le Cam, L. M., Neyman, J., Scott, E. L. (eds.) Proc. Sixth Berkeley Symposium, III, Univ. of California Press, pp. 579–614 (1972).

  • Mollison, D.: Spatial contact models for ecological and epidemic spread. J. Roy. Statist. Soc. B39, 283–326 (1977).

    Google Scholar 

  • Mollison, D., Kuulasmaa, K.: Spatial epidemic models: theory and simulations. In: Bacon, P. J. (ed.) Population dynamics of rabies in wildlife, pp. 291–309. New York: Academic Press 1985.

    Google Scholar 

  • Mollison, D.: Modelling biological invasions: chance, explanation, prediction. Philos. Trans. R. Soc. Lond. B, 314, 675–693 (1986).

    Google Scholar 

  • Mooney, H. A., Drake, J. A. (eds.): Ecology of biological invasions of North America and Hawaii. (Ecological Studies, vol. 58) Berlin Heidelberg New York: Springer 1986.

    Google Scholar 

  • Nobel, J. V.: Geographic and temporal development of plagues. Nature 250, 726–729 (1974).

    Google Scholar 

  • Okubo, A.: Diffusion-type models for avian range expansion. In: Quellet, H. (ed.) Acta XIX Congress Internationa lis Ornithologici, vol. 1, pp. 1038–1049. National Museum of Natural Sciences, University of Ottawa Press, Ontario, Canada 1988.

    Google Scholar 

  • Othmer, H. G., Dunbar, S. R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988).

    Google Scholar 

  • Roughgarden, J.: Theory of population genetics and evolutionary ecology: an introduction. New York: MacMillan 1979.

    Google Scholar 

  • Sikes, R. K.: Pathogenesis of rabies in wildlife. I. Comparative effect of varying doses of rabies virus inoculated into foxes and skunks. Am. J. Vet. Res. 23, 1041–1047 (1962).

    Google Scholar 

  • Skellam, J. G.: Random dispersal in theoretical populations. Biometrica 38, 196–218 (1951).

    Google Scholar 

  • Smith, A. D. M.: A continuous time dterministic model of temporal rabies. In: Bacon, P. J. (ed.) Population dynamics of rabies in wildlife. New York: Academic Press 1985.

    Google Scholar 

  • Steck, F., Wandeler, A.: The epidemiology of fox rabies in Europe. Epidemiol. Rev. 2, 71–96 (1980).

    Google Scholar 

  • Thieme, H. R.: A model for the spatial spread of an epidemic. J. Math. Biol 4, 337–351 (1977a).

    Google Scholar 

  • Thieme, H. R.: The asymptotic behaviour of solutions of nonlinear integral equations. Math. Z. 157, 141–154 (1977b).

    Google Scholar 

  • Thieme, H. R.: Asymptotic estimates of the solutions of non-linear integral equations and asymptotic speeds for the spread of populations. Jal Reine Angew. Math. 306, 94–121 (1979a).

    Google Scholar 

  • Thieme, H. R.: Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol. 8, 173–187 (1979b).

    Google Scholar 

  • Van den Bosch, F., Zadoks, J. C., Metz, J. A. J.: Focus expansion in plant disease. I: The constant rate of focus expansion. Phytopathology 78, 54–58 (1988).

    Google Scholar 

  • Van den Bosch, F., Zadoks, J. C., Metz, J. A. J.: Focus expansion in plant disease. II: Realistic parameter-sparse models. Phytopathology 78, 59–64 (1988).

    Google Scholar 

  • Van den Bosch, F., Frinking, H. D., Metz, J. A. J., Zadoks, J. C.: Focus expansion in plant disease. III: Two experimental examples. Phytopathology 78, 919–925 (1988).

    Google Scholar 

  • Van den Bosch, F., Verhaar, M. A., Buiel, A. A. M., Hoogkamer, W., Zadoks, J. C.: Focus expansion in plant disease. IV: Expansion rates in mixtures of resistant and susceptible hosts. Phytopathology, in press.

  • Van den Bosch, F., Hengeveld, R., Metz, J. A. J.: Analysing animal range expansion. Preprint (1988).

  • Verkaik, A. J.: The muskrat in the Netherlands. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 90, 67–72 (1987).

    Google Scholar 

  • Vincent, J. P., Quéré, J. P.: Quelques donées sur la reproduction et sur la dynamique des populations du rat musqué dans le nord de la France. Ann. Zool. Ecol. anim. 4, 395–415 (1972).

    Google Scholar 

  • Watt, K. E. F.: Ecology and resource management. New York: McGraw-Hill 1968.

    Google Scholar 

  • Weinberger, H. F.: Asymptotic behaviour of a model in population genetics. In: Chadam, J. M. (ed.) Nonlinear partial differential equations and applications. (Lect. Notes in Maths., vol. 648, pp. 47–98) Berlin Heidelber New York: Springer 1978.

    Google Scholar 

  • Weinberger, H. F.: Long-time behaviour of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982).

    Google Scholar 

  • Williamson, E. J.: The distribution of larvae of randomly moving insects. Aust. J. Biol. Sci. 14, 598–604 (1961).

    Google Scholar 

  • Williamson, M. H., Brown, K. C.: The analysis and modelling of British invasions. Phil. Trans. R. Soc. London B314, 505–522 (1986).

    Google Scholar 

  • Wolfe, M. S.: The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annu. Rev. Phytopathol. 23, 251–273 (1985).

    Google Scholar 

  • Zadoks, J. C., Kampmeijer, P.: The role of crop populations and their development, illustrated by means of a simulator Epimul 76. Ann. N.Y. Acad. Sci. 287, 164–190 (1977).

    Google Scholar 

  • Zawolek, M. W.: A physical theory of focus development in plant disease. Agric. Univ. Wageningen Papers. Pudoc, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Bosch, F., Metz, J.A.J. & Diekmann, O. The velocity of spatial population expansion. J. Math. Biol. 28, 529–565 (1990). https://doi.org/10.1007/BF00164162

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00164162

Key words

Navigation