Skip to main content
Log in

A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A new method for display and analysis of lipophilic/hydrophilic properties on molecular surfaces is presented. The present approach is based on the concept of Crippen and coworkers that the overall hydrophobicity of a molecule (measured as the logarithm of the partition coefficient in an octanol/water system) can be obtained as a superposition of single atom contributions. It is also based on the concept of molecular lipophilicity potentials (MLP) first introduced by Audry and coworkers in order to establish a 3D lipophilicity potential profile in the molecular environment. Instead of using a l/r- or an exponential distance law between the atomic coordinates and a point on the molecular surface, a new distance dependency is introduced for the calculation of an MLP-value on the solvent-accessible surface of the molecule. In the present formalism the Crippen values (introduced for atoms in their characteristic structural environment) are ‘projected’ onto the van der Waals surface of the molecule by a special weighting procedure. This guarantees that only those atomic fragments contribute significantly to the surface values that are in the close neighbourhood of the surface point. This procedure not only works for small molecules but also allows the characterization of the surfaces of biological macromolecules by means of local lipophilicity. Lipophilic and hydrophilic domains can be recognized by visual inspection of computer-generated images or by computational procedures using fuzzy logic strategies. Local hydrophobicities on different molecular surfaces can be quantitatively compared on the basis of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Delaage, Physico-chemical aspects of molecular recognition, In Delaage, M. (Ed.), Molecular Recognition Mechanisms, VCH Publishers, New York, 1991, pp. 1–14.

    Google Scholar 

  2. Kauzmann, W., Adv. Prot. Chem., 14 (1959) 1.

    Google Scholar 

  3. Suzuki, T. and Kudo, Y., J. Comput.-Aided Mol. Design, 4 (1990) 155.

    Google Scholar 

  4. Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley, New York, 1973.

    Google Scholar 

  5. Fujita, T., Iwasa, J. and Hansch, C., J. Am. Chem. Soc., 86 (1964) 5175.

    Google Scholar 

  6. Nys, G.C. and Rekker, R.F., Chim. Thér., 8 (1973) 521.

    Google Scholar 

  7. Rekker, R.F., The Hydrophobic Fragmental Constants, Elsevier, New York, 1977.

    Google Scholar 

  8. Hansch, C. and Leo, A., Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, 1979.

    Google Scholar 

  9. Connemann, M., Untersuchungen zur Thermodynamik wässriger zweiphasiger Polymersysteme und Bestimmung-von Proteinverteilungskoeffizienten in diesen Extraktionssystemen, Thesis, Darmstadt, 1992.

  10. Kellogg, G.E. and Abraham, D.J., J. Mol. Graphics, 10 (1992) 212.

    Google Scholar 

  11. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem. Chim. Thér., 19 (1984) 71.

    Google Scholar 

  12. Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    Google Scholar 

  13. Ghose, A.K., Pritchett, A. and Crippen, G.M., J. Comput. Chem. 9 (1988) 80.

    Google Scholar 

  14. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Google Scholar 

  15. Lichtenthaler, F.W., Immel, S. and Kreis, U., Starch/Stärke, 43 (1991) 121.

    Google Scholar 

  16. Lee, B. and Richards, F.M., J. Mol. Biol., 55 (1971) 379.

    Google Scholar 

  17. Connolly, M., Science, 221 (1983) 709.

    Google Scholar 

  18. Quarendon, P., Naylor, C.B. and Richards, W.G., J. Mol. Graphics, 2 (1984) 4.

    Google Scholar 

  19. Heiden, W., Schlenkrich, M. and Brickmann, J., J. Comput.-Aided Mol. Design, 4 (1990) 255.

    Google Scholar 

  20. Audry, E., Dubost, J.-P., Colleter, J.-C. and Dallet, P., Eur. J. Med. Chem. Chim. Thér., 21 (1986) 71.

    Google Scholar 

  21. Furet, P., Sele, A. and Cohen, N.C., J. Mol. Graphics, 6 (1988) 182.

    Google Scholar 

  22. Croizet, F., Langlois, M.H., Dubost, J.P., Braquet, P., Audry, E., Dallet, P. and Colleter, J.C., J. Mol. Graphics, 8 (1990) 153.

    Google Scholar 

  23. Eisenberg, D., Weiss, R.M. and Terwilliger, T.C., Nature, 299 (1982) 371.

    Google Scholar 

  24. Eisenberg, D. and McLachlan, A.D., Nature, 319 (1986) 199.

    Google Scholar 

  25. Fauchère, J.-L., Quarendon, P. and Kaetterer, L., J. Mol. Graphics, 6 (1988) 203.

    Google Scholar 

  26. Brasseur, R., J. Biol. Chem., 266 (1991) 16120.

    Google Scholar 

  27. Reif, F., Statistische Physik und Theorie der Wärme, 2nd edn., de Gruyter, Berlin, 1985, p. 454.

    Google Scholar 

  28. Heiden, W. and Brickmann, J., in preparation.

  29. Moeckel, G., Heiden, W. and Brickmann, J., in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiden, W., Moeckel, G. & Brickmann, J. A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Computer-Aided Mol Des 7, 503–514 (1993). https://doi.org/10.1007/BF00124359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124359

Key words

Navigation