Skip to main content
Log in

Pharmacophore refinement of gpIIb/IIIa antagonists based on comparative studies of antiadhesive cyclic and acyclic RGD peptides

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Structurally guided design approaches to low-molecular-weight platelet aggregation antagonists addressing the platelet-associated heterodimeric cell surface receptor gpIIb/IIIa rely on comparative studies of an ensemble of conformationally and biologically characterized compounds, since no high-resolution structure of the receptor system is available. We report a classical indirect and comparative pharmacophore refinement approach based on a series of small cyclic Arg-Gly-Asp (RGD) peptides as gpIIb/IIIa-fibrinogen interaction antagonists. These peptides have previously been investigated as potent and selective tumor cell adhesion inhibitors. The definition of geometrical descriptors classifying the RGD peptide conformations and their subsequent analysis over selected RGD- and RXD-containing protein structures allows for a correlation of distinct structural features for platelet aggregation inhibition. An almost parallel alignment of the Arg and Asp side chains was identified by a vector analysis as being present in all active cyclic hexa-and pentapeptides. This orientation is induced mainly by the constraint of backbone cyclization and is not of any covalent tripeptide-inherent origin, which was rationalized by a 500 ps high-energy MD simulation of a sequentially related linear model peptide. The incorporation of the recognition tripeptide Arg-Gly-Asp into the cyclic peptide templates acted as a filter mechanism, restricting the otherwise free torsional relation of both side chains to a parallel orientation. Based on the derived results, several detailed features of the receptor binding site could be deduced in terms of receptor complementarity. These findings should govern the design of next-generation compounds with enhanced activities. Furthermore, the complementary stereochemical characteristics of the substrate can be used as boundary conditions for pseudoreceptor modelling studies that are capable of reconstructing a hypothetical binding pocket, qualitatively resembling the steric and electronic demands of gpIIb/IIIa. It is interesting to note that these features provide clear differentiation to requirements for inhibition of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGXoWaaS% baaSqaaiaabAfadaWgaaadbaaabeaaaSqabaGccaqGYoWaaSbaaSqa% aiaaiodaaeqaaaaa!3DDC!\[{\text{\alpha }}_{{\text{V}}_{} } {\text{\beta }}_3 \] substrate binding. This can account for the extremely high selectivity and activity of some of our constrained peptides for either the % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGXoWaaS% baaSqaaiaab+bbcaqGIbaabeaakiaabk7adaWgaaWcbaGaaG4maaqa% baaaaa!3E56!\[{\text{\alpha }}_{{\text{b}}} {\text{\beta }}_3 \] or the % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9qq-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGXoWaaS% baaSqaaiaabAfaaeqaaOGaaeOSdmaaBaaaleaacaaIZaaabeaaaaa!3DA4!\[{\text{\alpha }}_{\text{V}} {\text{\beta }}_3 \] receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ClaasenV. (Ed.) Trends in Drug Research, Elsevier Amsterdam, 1990.

    Google Scholar 

  2. MarshallG.R., In BeddellC.R. (Ed.) The Design of Drugs to Macromolecular Targets, Wiley, New York, NY, 1992, pp. 1–24.

    Google Scholar 

  3. RosenM.K. and SchreiberS.L., Angew. Chem., Int. Ed. Engl., 31 (1993) 384.

    Google Scholar 

  4. VanDuyneG.D., StandaertR.F., KarplusP.A., SchreiberS.L. and ClardyJ., Science, 252 (1991) 839.

    Google Scholar 

  5. VanDuyneG.D., StandaertR.F., SchreiberS.L. and ClardyJ., J. Am. Chem. Soc., 113 (1991) 7433.

    Google Scholar 

  6. WeberC., WiderG., VonFreybergB., TraberR., BraunW., WidmerH. and WüthrichK., Biochemistry, 30 (1991) 6563.

    Google Scholar 

  7. FesikS.W., ClampeJr.R.T., EatonH.L., GemmeckerG., OlejniczakE.T., NeriR., HolzmanT.F., EganD.A., EdaljiR., SimmerB., HelfrichR., HochlowskiJ. and JacksonM., Biochemistry, 30 (1991) 6374.

    Google Scholar 

  8. RichardsW.G. (Ed.) Computer-Aided Molecular Design Oxford University Press, London, 1989.

    Google Scholar 

  9. PerunT.J. and PropstC.L. (Eds.) Computer-Aided Drug Design, Methods and Applications, Mareel Dekker, New York, NY, 1989.

    Google Scholar 

  10. KuntzI.D., Science, 357 (1992) 1078.

    Google Scholar 

  11. KessierH., HauptA. and WillM. In PerunT.J. and PropstC.L. (Eds.) Computer-Aided Drug Design, Methods and Applications, Marcel Dekker, New York, NY, 1989, pp. 461–483.

    Google Scholar 

  12. KesslerH., Angew. Chem., Int. Ed. Engl., 21 (1982) 512.

    Google Scholar 

  13. HrubyV., Life Sci., 31 (1983) 189.

    Google Scholar 

  14. GurrathM., MüllerG., KesslerH., AumailleyM. and TimplR., Eur. J. Biochem., 210 (1992) 911.

    Google Scholar 

  15. GartnerT.K. and BennettJ.S., J. Biol. Chem., 260 (1985) 11891.

    Google Scholar 

  16. KloozewiakM., TimmonsS., LukasT.J. and HawigarJ., Biochemistry, 23 (1984) 1767.

    Google Scholar 

  17. LamS.C.-T., PlowE.F., SmithM.A., AndrieuxA., RyckwaertJ.-J., MarguerieG. and GinsbergM.H., J. Biol. Chem., 262 (1987) 947.

    Google Scholar 

  18. NicholsA.J., RuffoloJr.R.R., HuffmanW.F., PosteG. and SamanenJ., Trends Pharmacol. Sci., 13 (1992) 413.

    Google Scholar 

  19. RuoslahtiE. and PierschbacherM.D., Science, 238 (1987) 491.

    Google Scholar 

  20. HynesR.O., Cell, 48 (1987) 549.

    Google Scholar 

  21. AlbedaS.M. and BuekC.A., FASEB J., 4 (1990) 2868.

    Google Scholar 

  22. HumphriesM.J., J. Cell Sci., 97 (1990) 585.

    Google Scholar 

  23. DamskyC.H. and BernfieldM., Curr. Opin. Cell Biol., 2 (1990) 813.

    Google Scholar 

  24. D'SouzaS.E., GinsbergM.H. and PlowE.F., Trends Biochem. Sci., 16 (1991) 246.

    Google Scholar 

  25. PierschbacherM.D. and RuoslahtiE., Nature, 309 (1984) 30.

    Google Scholar 

  26. PierschbacherM.D. and RuoslahtiE., Proc. Natl. Acad. Sci. USA, 81 (1984) 5985.

    Google Scholar 

  27. YamadaK.M., J. Biol. Chem., 266 (1991) 12809.

    Google Scholar 

  28. PierschbacherM.D. and RuoslahtiE., J. Biol. Chem., 262 (1987) 17924.

    Google Scholar 

  29. GehlsenK.R., ArgravesW.S., PierschbacherM.D. and RuoslahtiE., J. Cell Biol., 106 (1984) 925.

    Google Scholar 

  30. HautanenA., GailitJ., MannD.M. and RuoslahtiE., J. Biol. Chem., 264 (1989) 1437.

    Google Scholar 

  31. SamanenJ., AliF.E., RomoffT., CalvoR., SørensenE., BennettD., BerryD., KosterP., VaskoJ., PowersD., StadelJ. and NicholsA., In GiraltE. and AndreuD. (Eds.) Peptides 1990 (Proceedings of the 21st European Peptide Symposium), ESCOM, Leiden, 1991, pp. 781–783.

    Google Scholar 

  32. NuttR.F., BradyS.F., SiskoJ.T., CiccaroneT.M., ColtonC.D., LevyM.R., GouldR.J., ZhangG., FriedmanP.A. and VeberD.F., In GiraltE. and AndreuD. (Eds.) Peptides 1990 (Proceedings of the 21st European Peptide Symposium), ESCOM, Leiden, 1991, pp. 784–786.

    Google Scholar 

  33. SamanenJ., AliF., RomoffT., CalvoR., SørensenE., VaskoJ., StorerB., BerryD., BennettD., StrohsackerM., PowersD., StadelJ. and NicholsA., J. Med. Chem., 34 (1991) 3114.

    Google Scholar 

  34. AumailleyM., GurrathM., MüllerG., CalveteJ., TimplR. and KesslerH., FEBS Lett., 291 (1991) 50.

    Google Scholar 

  35. ScarboroughR.M., NaughtonM.A., TengW., RoseJ.W., PhillipsD.R., NannizziL., ArfstenA., CampbellA.M. and CharoI.F., J. Biol. Chem., 268 (1993) 1066.

    Google Scholar 

  36. ChengS., CraigW.S., MullenD., TschoppJ.F., DixonD. and PierschbacherM.D., J. Med. Chem., 37 (1994) 1.

    Google Scholar 

  37. KleinS.I., MolinoB.F., ChuV., RuggeriZ., CzekajM., GardnerC.J., NewmanJ. and BarrettJ.A., In GiraltE. and AndreuD. (Eds.) Peptides 1990 (Proceedings of the 21st European Peptide Symposium), ESCOM, Leiden, 1991, pp. 374–375.

    Google Scholar 

  38. CallahanJ.F., BeanJ.W., BurgessJ.L., EgglestonD.S., HwangS.M., KoppleK.D., KosterP.F., NicholsA., PeishoffC.E., SamanenJ.M., VaskoJ.A., WongA. and HuffmanW.F., J. Med. Chem., 35 (1992) 3970.

    Google Scholar 

  39. AligL., EdenhoferA., HadváryP., HürzelerM., KnoppD., MüllerM., SteinerB., TrzeciakA. and WellerT., J. Med. Chem., 35 (1992) 4393.

    Google Scholar 

  40. GreenspoonN., HershkovizR., AlonR., VaronD., ShenkmanB., MarxG., FedermanS., KapustinaG. and LiderO., Biochemistry, 32 (1993) 1001.

    Google Scholar 

  41. GanZ.-R., GouldR.J., JacobsJ.W., FriedmanP.A. and PolokoffM.A., J. Biol. Chem., 263 (1988) 19827.

    Google Scholar 

  42. DennisM.S., HenzelW.J., PittiR.M., LipariM.T., NapierM.A., DeisherT.A., BuntingS. and LazarusR.A., Proc. Natl. Acad. Sci. USA, 87 (1989) 2471.

    Google Scholar 

  43. WilliamsJ., RucinskiB., HoltJ. and NiewiarowskiS., Biochim. Biophys. Acta, 1039 (1990) 81.

    Google Scholar 

  44. SoszkaT., KnudsenK.A., BevigliaL., RossiC., PoggiA. and NiewiarowskiS., Exp. Cell Res., 196 (1991) 6.

    Google Scholar 

  45. ShebuskiR.J., RamjitD.R., BencenG.H. and PolokoffM.A., J. Biol. Chem., 264 (1989) 21550.

    Google Scholar 

  46. HuangT.-F., HoltJ.C., KirbyE.P. and NiewiarowskiS., Biochemistry, 28 (1989) 661.

    Google Scholar 

  47. SavageB., MarzecU.M., ChaoB.H., HarkerL.A., MaraganoreJ.M. and RuggeriZ.M., J. Biol. Chem., 265 (1990) 11766.

    Google Scholar 

  48. SatoM., SardanaM.K., GrasserW.A., GarkyV.M., MurrayJ.M. and GouldR.J., J. Cell Biol., 111 (1990) 1713.

    Google Scholar 

  49. PfaffM., TangemannK., MüllerB., GurrathM., MüllerG., KesslerH., TimplR. and EngelJ., J. Biol. Chem., 269 (1994) 20233.

    Google Scholar 

  50. BartlettR.A., SheaG.T., TelferS.J. and WatermanS., In RobertsS.M. (Ed.) Molecular Recognition: Chemical and Biochemical Problems, The Royal Society of Chemistry, Cambridge, 1989, pp. 182–196.

    Google Scholar 

  51. AdlerM., LazarusR.A., DennisM.S. and WagnerG., Science, 253 (1991) 445.

    Google Scholar 

  52. SaudekV., AtkinsonP.A. and PeltonJ., Biochemistry 30 (1991) 7369.

    Google Scholar 

  53. DalvitC., WidmerH., BovermannG., BrockenridgeR. and MetternichR., Eur. J. Biochem., 202 (1991) 315.

    Google Scholar 

  54. CookeR.M., CarterB.G., MartinD.M.A., Murray-RustP. and WeirM.P., Eur. J. Biochem., 202 (1991) 323.

    Google Scholar 

  55. Dauber-OsguthorpeP., RobertsV.A., OsguthorpeD.J., WolffJ., GenestM. and HaglerA.T., Protein Struct. Funct. Genet., 4 (1988) 31.

    Google Scholar 

  56. VeristL., Phys. Rev., 159 (1967) 98.

    Google Scholar 

  57. PfaffM., AumailleyM., SpecksU., KnolleJ., ZerwesH.G. and TimplR., Exp. Cell Res., 206 (1993) 167.

    Google Scholar 

  58. MüllerG., GurrathM., KesslerH. and TimplR., Angew. Chem., Int. Ed. Engl., 31 (1992) 326.

    Google Scholar 

  59. MüllerG., GurrathM., KurzM. and KesslerH., Protein Struct. Funct. Genet., 15 (1993) 235.

    Google Scholar 

  60. WistowG., TurnellB., SummersL., SlingsbyC., MossD., MillerL., LindleyP. and BlundellT., J. Mol. Biol., 107 (1983) 175.

    Google Scholar 

  61. KurzM., MierkeD.F. and KesslerH., Angew. Chem., Int. Ed. Engl., 31 (1992) 210.

    Google Scholar 

  62. BoguskyM.J., NaylorA.M., PitzenbergerS.M., NuttR.F., BradyS.F., ColtonC.D., SiskoJ.T., AndersonP.S. and VeberD.F., Int. J. Pept. Protein Res. 39 (1992) 63.

    Google Scholar 

  63. PeishoffC.E., AliF.E., BeanJ.W., CalveR., D'AmbrosioA.D., EgglestonD.S., HwangS.M., KlineT.P., KosterP.F., NicholsA., PowersD., RomoffT., SamanenJ.M., StadelJ., VaskoJ.A. and KoppleK.D., J. Med. Chem. 35 (1992) 3962.

    Google Scholar 

  64. CotraitM., KreisslerM., HoflackJ., LehnJ.-M. and MaigretB., J. Comput.-Aided Mol. Design, 6 (1992) 113.

    Google Scholar 

  65. SiahaanT., LarkL.R., PierschbacherM.D., RuoslahtiE. and GieraschL.M., In RivierJ.E. and MarshallG.R., (Eds.) Peptides: Chemistry, Structure and Biology (Proceedings of the 11th American Peptide Symposium), ESCOM, Leiden, 1990, pp. 699–701.

    Google Scholar 

  66. RuoslahtiE. and PlerschbacherM.D., Science, 238 (1987) 491.

    Google Scholar 

  67. BeanJ.W., KoppleK.D. and PeishoffC.E., J. Am. Chem. Soc., 114 (1992) 5328.

    Google Scholar 

  68. KoppleK.D., BauresP.W., BeanJ.W., D'AmbrosioC.A., HughesJ.L., PeishoffC.E. and EgglestonD.S., J. Am. Chem. Soc., 114 (1992) 9615.

    Google Scholar 

  69. Gurrath, M., Ph.D. Thesis, Technischo Universität München, Garching, 1992.

  70. Müller, G., Ph.D. Thesis, Technischo Universität München, Garching, 1992.

  71. LenderA., YaoW., SprengelerP.A., SpanevelloR.A., FurstG.T., HirschmannR. and SmithIIIA.B., Int. J. Pept. Protein Res., 42 (1993) 509.

    Google Scholar 

  72. JohnsonJr.W.C., PaganoT.G., BassonC.T., MadriJ.A., GooleyP. and ArmitageI.M., Biochemistry, 32 (1993) 268.

    Google Scholar 

  73. BarkerP.L., BullensS., BuntingS., BurdiekD.J., ChanK.S., DeisherT., EigenbrotC., GadekT.R., GantzosR., LipariM.T., MuirC.D., NapierM.A., PittiR.M., PaduaA., QuanC., StanleyM., StrubleM., TomJ.Y.K. and BrunierJ.P., J. Med. Chem., 35 (1992) 2040.

    Google Scholar 

  74. O'NeilK.T., HoessR.H., JacksonS.A., RamachandranN.S., MousaS.A. and DeGradoW.F., Protein Struct. Funct. Genet., 14 (1992) 509.

    Google Scholar 

  75. LamK.S., SalmonS.E., HerschE.M., HrubyV.J., KazmierskiW.M. and KnappR.J., Nature, 354 (1991) 82.

    Google Scholar 

  76. HoughtenR.A., PinillaC., BlondelleS.E., AppleJ.R., DooleyC.T. and CuervoJ.H., Nature, 354 (1991) 84.

    Google Scholar 

  77. ScottJ.K. and SmithG.P., Science, 249 (1990) 386.

    Google Scholar 

  78. DelvinJ.J., PanganibanL.C. and DevlinP.E., Science, 249 (1990) 404.

    Google Scholar 

  79. CwirlaS.E., PetersE.A., BarrettR.W. and DowerW.J., Proc. Natl. Acad. Sci. USA, 87 (1990) 6378.

    Google Scholar 

  80. FeliciF., CastagnoliL., MusacchioA., JappelliR. and CesareniG., J. Mol. Biol., 222 (1991) 301.

    Google Scholar 

  81. JungG. and Beck-SickingerA.G., Angew. Chem., Int. Ed. Engl., 31 (1992) 367.

    Google Scholar 

  82. SimonR.J., KaniaR.S., ZuckermannR.N., HuebnerV.D., JewellD.A., BanvilleS., NgS., WangL., RosenbergS., MarloweC.K., SpellmeyerD.C., TanR., FrankelA.D., SantiD.V., CohenF.E. and BarlettP.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 9367.

    Google Scholar 

  83. KesslerH., Angew. Chem., Int. Ed. Engl., 32 (1993) 543.

    Google Scholar 

  84. HolmesM.A., TronrudD.E. and MatthewsB.W., Biochemistry, 22 (1983) 236.

    Google Scholar 

  85. CarterD.C., MelisK.A., O'DonnellS.E., BurgessB.K., FureyJr.W.F., WangB.-C. and ScottC.D., J. Mol. Biol., 184 (1985) 279.

    Google Scholar 

  86. RyuS.-E., KwongP.D., TrunehA., PorterT.G., ArthosJ., RosenbergM., DaiX., XuongN.-H., AxelR., SweetR.W. and HendricksonW.A., Nature 348 (1990) 419.

    Google Scholar 

  87. FujinagaM., DelbaereL.T.J., BrayerG.D. and JamesM.N.G., J. Mol. Biol., 184 (1985) 479.

    Google Scholar 

  88. OchiH., HataY., TanakaN., KakudoM., SakuraiT., AiharaS. and MoritaY., J. Mol. Biol., 166 (1983) 407.

    Google Scholar 

  89. LeshyD.J., HendricksonW.A., AukhilI. and EricksonH.P., Science, 258 (1992) 987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, G., Gurrath, M. & Kessler, H. Pharmacophore refinement of gpIIb/IIIa antagonists based on comparative studies of antiadhesive cyclic and acyclic RGD peptides. J Computer-Aided Mol Des 8, 709–730 (1994). https://doi.org/10.1007/BF00124017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124017

Key words

Navigation