Skip to main content
Log in

The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances

  • Published:
Vegetatio Aims and scope Submit manuscript

Summary

A comprehensive scheme is presented which provides qualitative models of vegetation dynamics in communities subject to recurrent disturbance. The scheme has been derived to deal mainly with terrestrial communities dominated by higher plants, but may be more widely applicable.

The scheme utilizes a small number of life history attributes termed ‘vital attributes’ which pertain to the potentially dominant species in a particular community. Three main groups of vital attributes are recognized, relating to the method of persistence of species during a disturbance and to their subsequent arrival, to their ability to establish and grow to maturity following the disturbance, and to the time taken for them to reach critical stages in their life history.

In the application of the scheme, each major species is first categorized into a ‘species type’, determined by its specific attributes in the first two vital attribute groups. The interaction between various species, based on their species types and life stage attributes, then yields a replacement sequence which depicts the major shifts in composition and dominance which occur following a disturbance. Although 30 species types are recognized, only 15 distinct patterns of behaviour are displayed in replacement sequences.

Examples of replacement sequences for two different forest communities are provided.

The degree to which vital attributes are robust properties of a species is explored in relation to different disturbance frequencies and intensities, and to the seasonal time of disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashton, D.H. 1956. Studies on the autecology of Encalyptus regnans F.v. M. Ph. D. Thesis, University of Molbourne, unpublished.

  • Cattelino, P.J., I.R.Noble, R.O.Slatyer & S.R.Kessell. 1979. Predicting the multiple pathways of plant succession. Environ. Manage. 3: 41–50.

    Google Scholar 

  • Clements, F.E. 1916. Plant succession. Carnegie Inst. Washington, Publ. 242, 512 pp.

  • Clements, F.E. 1936 Nature and structure of the climax. J. Ecol., 24: 252–284.

    Google Scholar 

  • Connell, J.H. & R.O.Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Amer. Nat. 111: 1119–1144.

    Google Scholar 

  • Drury, W.H. & I.C.T.Nisbet. 1973. Succession. J. Arnold Arboretum 54: 331–368.

    Google Scholar 

  • Egler, F.E. 1954. Vegetation science concepts, I. Initial floristic composition—a factor in old-field vegetation development. Vegetatio 4: 412–417.

    Google Scholar 

  • Forcier, L.K. 1975. Reproductive strategies and the co-occurrence of climax tree species. Science 189: 808–809.

    Google Scholar 

  • Gilbert, J.M. 1959. Forest succession in the Florentine Valley, Tasmania. Pap. Roy. Soc. Tas. 93: 129–151.

    Google Scholar 

  • Gill, A.M. 1975. Fire and the Australian flora: A review. Aust. For. 38: 4–25.

    Google Scholar 

  • Gleason, H.A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26.

    Google Scholar 

  • Golley, F.B. (ed.) 1977. Benchmark Papers in Ecology 15. Ecological Succession. Dowden, Hutchinson & Ross, Inc., Pennsylvania. 375 pp.

    Google Scholar 

  • Harper, I.L. 1977. Population biology of plants. Academic Press, London. 892 pp.

    Google Scholar 

  • Horn, H.S. 1976. Succession, In: R.M.May (ed.), Theoretical Ecology: Principles and Applications. p. 187–204. Blackwell, Oxford.

    Google Scholar 

  • Howard, T.M. 1973. Studies on the ecology of Nothofagus cunninghamij Gerst., 1. Natural regeneration on the Mt. Donna Buang massif, Victoria. Aust. J. Bot. 21: 67–78.

    Google Scholar 

  • Jackson, W.D. 1968. Fire, air, water and earth—an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3: 9–16.

    Google Scholar 

  • Jarrett, P.H. & A.H.K.Petrie. 1929. The vegetation of Black's Spur region, II. Pyric succession. J. Ecol. 17: 249–281.

    Google Scholar 

  • Kessell, S.R. 1979. Gradient Modeling. Springer-Verlag, New York. 320 pp.

    Google Scholar 

  • Lyon, L.J. & P.F.Stickney. 1977. Early vegetational succession following large northern Rocky Mountain wildfires. Proc. Tall Timbers Fire Ecol. Conf. 14: 355–375.

    Google Scholar 

  • Naveh, Z. 1975. The evolutionary significance of fire in the Mediterranean region. Vegetatio 29: 199–208.

    Google Scholar 

  • Noble, I.R. & R.O. Slatyer. 1977. Post fire succession of plants in Mediterranean ecosystems. In: H.A. Mooney & C.E. Conrad (eds.), Proc. Symp. Environmental Consequences of Fire and Fual Management in Mediterranean Ecosystems, pp. 27–36. U.S.D.A. Forest Service Gen. Tech. Rep. WO-3.

  • Noble, I.R. & R.O.Slatyer, 1978. The effect of disturbances on plant succession. Proc. Ecol. Soc. Aust. 10: 135–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank A.M. Gill, A.N. Gillison and B.R. Trenbath for their critical reading of draft manuscripts, and P.M. Cochrane for assistance with many aspects of manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noble, I.R., Slatyer, R.O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980). https://doi.org/10.1007/BF00121013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121013

Keywords

Navigation