Skip to main content
Log in

Eliashberg theory of the critical temperature and isotope effect. Dependence on bandwidth, band-filling, and direct Coulomb repulsion

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We investigate the dependence of the superconducting critical temperature and the isotope coefficient on bandwidth, band-filling, and the direct Coulomb repulsion, within Eliashberg theory. The Migdal approximation is assumed throughout, and the Coulomb repulsion is modelled by the Hubbard U and treated in the simplest approximation. We assume a constant density of states with a finite bandwidth. We find that while, in principle, small isotope coefficients are possible, it is unlikely that the isotope coefficient can ever be negative within this model. Furthermore, it is difficult to achieve small isotope coefficients for realistic parameters. Finally, we discuss a possible means by which large isotope coefficients can occur at low filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review of isotope effect measurements, see: J. P. Carbotte, On the Isotope Effect, to be published in Proceedings of Symposium on the Manifestations of the Electron-Phonon Interaction in CuO and Related Superconductors, R. Baquero, ed. (World Scientific, Singapore, 1991).

    Google Scholar 

  2. M. K. Crawford et al., Phys. Rev. B 41, 283 (1990).

    Google Scholar 

  3. J. P. Franck, et al., Physica B 169, 697 (1991).

    Google Scholar 

  4. E. Schachinger, M. G. Greeson, and J. P. Carbotte, Phys. Rev. B 42, 406 (1990).

    Google Scholar 

  5. R. Akis and J. P. Carbotte, Phys. Rev. B 41, 11661 (1990).

    Google Scholar 

  6. C. C. Tsuei et al., Phys. Rev. Lett. 65, 2724 (1990).

    Google Scholar 

  7. J. P. Carbotte, M. Greeson, and A. Perez-Gonzalez, Phys. Rev. Lett. 66, 1789 (1991).

    Google Scholar 

  8. J. C. Swihart, Phys. Rev. 116, 45 (1959).

    Google Scholar 

  9. J. Labbé and J. Friedel, J. Phys. Radium 27, 153 (1966); J. Labbé, S. Barisic, and J. Friedel, Phys. Rev. Lett. 19, 1039 (1967).

    Google Scholar 

  10. P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

    Google Scholar 

  11. J. W. Garland Jr., Phys. Rev. Lett. 11, 114 (1963).

    Google Scholar 

  12. J. P. Carbotte (private communication).

  13. N. N. Bogoliubov, N. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity (Consultants Bureau, New York, 1959).

    Google Scholar 

  14. T. Holstein, Ann. Phys. 8, 325 (1959).

    Google Scholar 

  15. J. Hubbard, Proc. Roy. Soc. A 276 238 (1963).

    Google Scholar 

  16. D. J. Thouless, Ann. Phys. 10, 553 (1960).

    Google Scholar 

  17. See, for example, P. B. Allen and B. Mitrović, in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds. (Academic Press, New York, 1982), Vol. 37, p. 1.

  18. J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

    Google Scholar 

  19. F. Marsiglio, Physica C 160, 305 (1989).

    Google Scholar 

  20. C. S. Owen and D. J. Scalapino, Physica 55, 691 (1971).

    Google Scholar 

  21. G. Bergmann and D. Rainer, Z. Physik 263, 59 (1973).

    Google Scholar 

  22. J. E. Hirsch first suggested this possibility to the author, in the context of temperature dependent Hall coefficient calculations.

  23. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963). More recently, see H. Fukuyama and Y. Hasegawa, Prog. Theor. Phys. (Suppl.) 101, 441 (1990), and L. Chen, C. Bourbonnais, T. Li, and A.-M. S. Tremblay, Phys. Rev. Lett. 66, 369 (1991).

    Google Scholar 

  24. D. Rainer and F. J. Culetto, Phys. Rev. B 19, 2540 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsiglio, F. Eliashberg theory of the critical temperature and isotope effect. Dependence on bandwidth, band-filling, and direct Coulomb repulsion. J Low Temp Phys 87, 659–682 (1992). https://doi.org/10.1007/BF00118329

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118329

Keywords

Navigation