Skip to main content
Log in

Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50° N and 30° S

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The latitudinal variation of the photolysis frequency of ozone to O(1D) atoms, J(O1D), was measured using a filter radiometer during the cruise ANT VII/1 of the research vessel Polarstern in September/October 1988. The J(O1D) noon values exhibited a maximum of 3.6×10-5 s-1 (2π sr) at the equator and decreased strongly towards higher latitudes. J(O1D) reached highest values for clean marine background air with low aerosol load and almost cloudless sky. The J(O1D) data, measured under these conditions and a temperature of 295 K, can be expressed by: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOsaiaacI% cacaqGpbWaaWbaaSqabeaaiiaacqWF8baFaaGccaqGebGaaeykaiaa% bccacqWF9aqpcaqGGaGaaeyzaiaabIhacaqGWbGaaeiiaiaabUhacq% GHsislcaaI4aGaaiOlaiaaicdacaaIYaGaeyOeI0IaaGioaiaac6ca% caaI4aGaaiiEaiaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaIZa% aaaOGaaeiiaiaabIhacaqGGaGaam4uaiabgUcaRiaaiodacaGGUaGa% aGinaiaacIhacaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGOnaa% aakiaadofadaahaaWcbeqaaiaaikdaaaGccaGG9bGaaeikaiaaboha% daahaaWcbeqaaiabgkHiTiaaigdaaaGccaGGPaaaaa!5EE9!\[J({\text{O}}^| {\text{D) }} = {\text{ exp \{ }} - 8.02 - 8.8x10^{ - 3} {\text{ x }}S + 3.4x10^{ - 6} S^2 \} {\text{(s}}^{ - 1} )\] where S represents the product of the overhead ozone column (DU) and the secant of the solar zenith angle. The meridional profile of the primary OH radical production rate P(OH) was calculated from the J(O1D) measurements and simultaneously recorded O3 and H2O mixing ratios. While the latitudinal distribution of J(O1D) and water vapour was nearly symmetric to the equator, high tropospheric ozone levels up to 40 ppb were observed in the Southern Hemisphere, SH, resulting in higher P(OH) in the SH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Behr, H. D., 1992, Net total and UV-B radiation at the sea surface, J. Atmos. Chem. 15, 299–314 (this issue).

    Google Scholar 

  • Bahe, F. C., and Schurath, U., 1978, Measurement of O(1D) formation by ozone photolysis in the troposphere, Pageoph 116, 537–544.

    Google Scholar 

  • Bahe, F. C., Marx, W. N., Schurath, U., and Röth, E. P., 1979, Determination of the absolute photolysis rate of ozone by sunlight, 297–1, at ground level, Atmos. Environ. 13, 1515–1522.

    Google Scholar 

  • Blackburn, T. T., 1984, Solar photolysis of ozone to singlet D oxygen atoms, O1D, Dissertation thesis, University of Michigan.

  • Brauers, T., and Hofzumahaus, A., 1992, Latitudinal variation of measured NO2 photolysis frequencies over the Atlantic Ocean between 50° N and 30° S, J. Atmos. Chem. 15, 269–282 (this issue).

    Google Scholar 

  • Chameides, W. L., and Tan, A., 1981, The two-dimensional diagnostic model for tropospheric OH: An uncertainty analysis, J. Geophys. Res. 86, 5209–5223.

    Google Scholar 

  • Crutzen, P. J., 1974, Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air, Tellus 26, 47–57.

    Google Scholar 

  • Demerjian, K. L., Schere, K. L., and Peterson, J. T., 1980, Theoretical estimates of actinic (spherically integrated) flux and photolytic rate constants of atmospheric species in the lower troposphere, in J. N., Pitts, R. L., Metcalf, and D., Grosjean (eds.), Advances in Environmental Science and Technology, Vol. 10, Wiley, New York, pp. 369–459.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, Chemical kinetics and photochemical data for use in stratospheric modeling, No. 9, NASA, JPL-90-1 publication.

  • Dickerson, R. R., Stedman, D. H., Chameides, W. L., Crutzen, P. J., and Fishman, J., 1979, Actinometric measurements and theoretical calculations of J(O3), the rate of photolysis of ozone to O(1D), Geophys. Res. Lett. 6, 833–836. Correction in Geophys. Res. Lett. 7, 112.

    Google Scholar 

  • Dickerson, R. R., Stedman, D. H., and Delany, A. C., 1982, Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, J. Geophys. Res. 87, 4933–4946.

    Google Scholar 

  • Ehhalt, D. H., 1987, Free radicals in the atmosphere, Free Rad. Res. Comms. 3, 153–164.

    Google Scholar 

  • Greenblatt, G. D. and Ravishankara, A. R., 1990, Laboratory studies on the stratospheric NO x production rate, J. Geophys. Res. 95, 3539–3547.

    Google Scholar 

  • Hofzumahaus, A., and Müller, M., 1993, Photolysis frequency of atmopsheric ozone: Accuracy of measurements by filter radiometers, to be published.

  • Hofzumahaus, A. and Brauers, T., 1993, The measured influence of aerosol and clouds on photolysis frequencies J(NO2) and J(O1D), to be published.

  • Junkermann, W., Platt, U., and Volz-Thomas, A., 1989, A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules, J. Atmos. Chem. 8, 203–227.

    Google Scholar 

  • Leighton, P. A., 1961, Photochemistry of Air Pollution, Academic Press, New York.

    Google Scholar 

  • LevyII, H., 1972, Photochemistry of the lower troposphere, Planet. Space Sci. 20, 919–935.

    Google Scholar 

  • LevyII, H., 1973, Photochemistry of minor constituents in the troposphere, Planet. Space Sci. 21, 575–591.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86, 7210–7254.

    Google Scholar 

  • Molina, L. T. and Molina, M. J., 1986, Absolute absorption cross sections of ozone in the 185 nm- to 350 nm wavelength range, J. Geophys. Res. 91, 14,501–14,508.

    Google Scholar 

  • NASA, 1990, TOMS gridded ozone data 1978–1988 (Vsn. 6), (P. T. Guimaraes, and R. McPeters (eds.), NASA/Goddard Space Flight Center.

  • Platt, U., Rudolph, J., Brauers, T., and Harris, G., 1992, Atmospheric measurements during Polarstern cruise ANTVII/1, 54° N to 32° S: an overview, J. Atmos. Chem. 15, 203–214 (this issue).

    Google Scholar 

  • Ritter, J. A., Stedman, D. H., Dickerson, R. R., and Blackburn, T. E., 1987, Dependence of J(O3−O1D) on the choice of extra-terrestrial solar irradiance data, Environ. Sci. Technol. 21, 505–508.

    Google Scholar 

  • Röth, E. P., 1992, Description of a photon flux model to determine photodissociation coefficients, Ber. Forschungszentrum Jülich, to be published.

  • Stolarski, R. S., Schoeberl, M. R. Newman, P. A., McPeters, R. D., and Krueger, A. J., 1990, The Antaretic ozone hole as observed by TOMS, Geophys, Res. Lett. 17, 1267–1270.

    Google Scholar 

  • Warneck, P., 1975, OH production rates in the troposphere, Planet. Space Sci. 23, 1507–1518.

    Google Scholar 

  • Winkler, P., 1988, Surface ozone over the Atlantic Ocean, J. Atmos. Chem. 7, 73–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofzumahaus, A., Brauers, T., Platt, U. et al. Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic Ocean between 50° N and 30° S. J Atmos Chem 15, 283–298 (1992). https://doi.org/10.1007/BF00115399

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115399

Key words

Navigation