Skip to main content
Log in

Plant architecture, sectoriality and plant tolerance to herbivores

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The evolution of tolerance is one potential plant response to selection imposed by herbivores. Plant architecture, and in turn, sectoriality may influence a plant's ability to tolerate tissue loss. However, each may either constrain or facilitate a plant's ability to compensate following herbivore attack depending on the plant part damaged and the identity of the damaging herbivore.

Plants are limited in their ability to respond to localized damage by chewing insects because carbon does not flow freely from damaged to undamaged plant parts, particularly between branches. Thus, defoliation of individual branches invariably results in decreased growth and reproduction of those branches. Within branches, carbon flow via vascular connections between orthostichies may ameliorate the effects of damage restricted within an orthostichy. Local induction of secondary chemicals to spread damage by folivores throughout a plant's canopy, redistribution of resources within and between IPU's, and delaying reproductive activity until resources have been pooled may all alleviate the constraints on response of plants to grazing.

In contrast to the effects of damage by grazers, the metameric construction of plants typically ensures points of regrowth from dormant buds when apical meristems are destroyed either by vertebrate browsers or galling insects. Sectoriality constrains the ability of sap-sucking insects to tap the entire resource base of a plant, thus having a positive effect on plant fitness. However, both the site and timing of attack mitigate the degree of limitation imposed by sectoriality. During peak periods of assimilation, photosynthate flow is mainly over short distances (between sources and sinks within the canopy), and thus sap-sucking insects have a small resource base to draw upon. In contrast, when sucking insects tap into vascular elements in which the flow is from roots to leaves and vice versa, resource availability to the insect (and in turn, potential resource loss from the plant) are only limited by the resources present in those vascular elements.

Studies of specific traits in species which demonstrate differential tolerance would greatly add to our understanding of herbivore impacts on plant growth and reproduction. In particular, intraspecific variation in tolerance has been documented for individuals within and among populations with different grazing histories. A number of traits related to sectoriality and architecture probably contribute to such variation in tolerance, and because they are easily manipulated and easily quantified, represent potentially profitable avenues of research. These traits include distribution of leaves and buds, ability to release secondary meristems from dormancy, and the timing of resource movement both before and subsequent to damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert P., Newell E. A., Chu C., Glyphis J., Gulmon S. L., Hollinger D. Y., Johnson N. D., Mooney H. A. & Puttick G. 1985. Allocation to reproduction in the chaparral shrub, Diplacus aurantiacus. Oecologia 66: 309–316.

    Google Scholar 

  • Baker, W. L. 1972. Eastern forest insects. U.S. Department of Agriculture, Forest Service Miscellaneous Publication No. 1175, Washington, D.C.

  • Bazzaz F. A., Carlson R. W. & Harper J. L. 1979. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279: 554–555.

    Google Scholar 

  • Beck C. B., Schmid R. and Rothwell G. W. 1982. Stelar morphology and the primary vascular system of seed plants. Bot. Rev. 48: 691–815.

    Google Scholar 

  • Belsky A. J. 1986. Does herbivory benefit plants? A review of the evidence. Amer. Nat. 127: 870–892.

    Google Scholar 

  • Benner B. L. 1988. Effects of apex removal and nutrient supplementation on branching and seed production in Thlaspi arvense (Brassicaceae). American Journal of Botany 75: 645–651.

    Google Scholar 

  • Bergelson J. & Crawley M. J. 1992a. Herbivory and Ipomopsis aggregata: the disadvantages of being eaten. Amer. Nat. 139: 870–882.

    Google Scholar 

  • Bergelson J. & Crawley M. J. 1992b. The effects of grazers on the performance of individuals and populations of scarlet gilia, Ipomopsis aggregata. Oecologia 90: 435–444.

    Google Scholar 

  • Bertin R. I. 1982. The ecology of sex expression in red buckeye. Ecology 63: 445–456.

    Google Scholar 

  • Chan C. B. & Cain J. C. 1967. The effect of seed formation on subsequent flowering in apple. Proc. of the Amer. Soc. of Hort. Sci. 91: 63–68.

    Google Scholar 

  • Coleman J. S. & Leonard A. S. 1995. Why it matters where on a leaf a folivore feeds. Oecologia 101: 324–328.

    Google Scholar 

  • Coley P. D., Bryant J. P. & ChapinIII F. S. 1985. Resource availability and plant antiherbivore defense. Science 230: 895–899.

    Google Scholar 

  • Cook C. W. & Stoddart L. A. 1960. Physiological responses of big sagebrush to different types of herbage removal. J. Range Manag. 13: 14–16.

    Google Scholar 

  • Danell K., Huss-Danell K. & Bergstrom R. 1985. Interactions between browsing moose and two species of birch in Sweden. Ecology 66: 1867–1878.

    Google Scholar 

  • Davis J. 1967. Some effects of deer browsing on chamise sprouts after fire. Amer. Midl. Nat. 77: 234–238.

    Google Scholar 

  • Davis J. M., Gordon M. P. & Smit B. A. 1991. Assimilate movement dictates remote sites of wound-induced gene expression in poplar leaves. Proc. Nat. Acad. Sci., USA 88: 2392–2396.

    Google Scholar 

  • DeClerk-Floate R. & Price P. W. 1994. Impact of a bud-galling midge on bud populations of Salix exigua. Oikos 70: 253–260.

    Google Scholar 

  • DeStevens D. & Putz F. E. 1984. Mortality rates of some rain forest palms in Panama. Principes 29: 162–165.

    Google Scholar 

  • DeLong D. M. 1971. The bionomics of leafhoppers. Ann. Rev. Entom. 16: 179–210.

    Google Scholar 

  • Denno R. F., McClure M. S. & Ott J. R. 1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Ann. Rev. of Entom. 40: 297–331.

    Google Scholar 

  • Doak D. F. 1991. The consequences of herbivory for dwarf fireweed: different time scales, different morphological scales. Ecology 72: 1397–1407.

    Google Scholar 

  • Dyer M. I., Acra M. A., Wang G. M., Coleman D. C., Freckman D. W., McNaughton S. J. & Strain B. R. 1991. Source-sink carbon relations in two Panicum coloratum ecotypes in response to herbivory. Ecology 72: 1472–1483.

    Google Scholar 

  • Edwards P. J. & Wratten S. D. 1983. Wound induced defences in plants and their consequences for patterns of insect grazing. Oecologia 59: 88–93.

    Google Scholar 

  • Fay P. A. & Hartnett D. C. 1991. Constraints on growth and allocation patterns of Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp. Oecologia 88: 243–250.

    Google Scholar 

  • Feeny P. 1976. Plant apparency and chemical defense. pp. 1–40. In: Wallace J. W. & Mansell R. L. (eds), Biochemical interaction between plants and insects. Plenum Press, New York.

    Google Scholar 

  • Fox J. F. 1995. Shoot demographic responses to manipulation of reproductive effort by bud removal in a willow. Oikos 72:283–287.

    Google Scholar 

  • Garrish R. S. & Lee T. D. 1989. Physiological integration in Cassia fasciculata Michx.: inflorescence removal and defoliation experiments. Oecologia 81: 279–284.

    Google Scholar 

  • Geber M. A. 1990. The cost of meristem limitation in Polygonum arenastrum: negative genetic correlations between fecundity and growth. Evolution 44: 799–819.

    Google Scholar 

  • Gold W. G. & Caldwell M. M. 1989a. The effects of spatial pattern of defoliation on regrowth of a tussock grass. I. Growth responses. Oecologia 80: 289–296.

    Google Scholar 

  • Gold W. G. & Caldwell M. M. 1989b. The effects of spatial pattern of defoliation on regrowth of a tussock grass. II. Canopy gas exchange. Oecologia 81: 437–442.

    Google Scholar 

  • Hall F. R. & Ferree D. C. 1976. Effects of insect injury simulation on photosynthesis of apple leaves. J. Econ. Entom. 69: 245–248.

    Google Scholar 

  • Hartnett D. C. & Abrahamson W. G. 1979. The effects of stem gall insects on life history patterns on Solidago canadensis. Ecology 60: 910–917.

    Google Scholar 

  • Haukioja E. 1991. The influence of grazing on the evolution, morphology and physiology of plants as modular organisms. Phil. Trans. Roy. Soc. Lond. B 333: 241–247.

    Google Scholar 

  • Haukioja E., Ruohomäki K., Senn J. Suomela J. & Walls M. 1990. Consequences of herbivory in the mountain birch (Betula pubescens ssp. tortuosa): importance of the functional organization of the tree. Oecologia 82: 238–247.

    Google Scholar 

  • Honkanen T. & Haukioja E. 1994. Why does a branch suffer more after branch-wide than after tree-wide defoliation? Oikos 71: 441–450.

    Google Scholar 

  • Honkanen T., Haukioja E. & Suomela J. 1994. Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): implications of plant source/sink relationships for plant-herbivore studies. Funct. Ecol. 8: 631–639.

    Google Scholar 

  • Horber E. 1980. Types and classification of resistance. pp. 15–21. In: Maxwell F. G. and Jennings P. R. (eds), Breeding plants resistant to insects, Wiley, New York.

    Google Scholar 

  • Horton M. & Lacey E. P. 1994. Carbon integration in Plantago aristata (Plantaginaceae): the reproductive effects of defoliation. Amer. J. Bot. 81: 278–286.

    Google Scholar 

  • Isebrands J. G., Dickson R. E. & Larson P. R. 1976. Translocation and incorporation of 14C into the petiole from different regions within developing cottonwood leaves. Planta 128: 185–194.

    Google Scholar 

  • Janzen D. H. 1976. Effect of defoliation on fruit-bearing branches of the Kentucky coffee tree, Gymnocladus dioicus (Leguminosae). Amer. Midl. Nat. 95: 474–478.

    Google Scholar 

  • Jones C. G., Hopper R. F., Coleman J. S. and Krischik V. A. 1993. Control of systemically induced herbivore resistance by plant vascular architecture. Oecologia 93: 452–456.

    Google Scholar 

  • Karlsson P. S. 1994. The significance of internal nutrient cycling in branches for growth and reproduction of Rhododendron lapponicum. Oikos 70: 191–200.

    Google Scholar 

  • Kerley G. I. H., Tiver F. & Whitford W. G. 1993. Herbivory of clonal populations: cattle browsing affects reproduction and population structure of Yucca elata. Oecologia 93: 12–17.

    Google Scholar 

  • Larson K. C. & Whitham T. G. 1991. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions. Oecologia 88: 15–21.

    Google Scholar 

  • Larson P. R. 1977. Phyllotactic transitions in the vascular system of Populus deltoides Bartr. as determined by 14C labeling. Planta 134:241–249.

    Google Scholar 

  • Larson P. R. & Dickson R. E. 1973. Distribution of imported 14C in developing leaves of eastern cottonwood according to phyllotaxy. Planta 111: 95–112.

    Google Scholar 

  • Larson P. R. & Dickson R. E. 1986. 14C translocation pathways in honeylocust and green ash: Woody plants with complex leaf forms. Phys. Plant. 66: 21–30.

    Google Scholar 

  • Lee S. Y. 1991. Herbivory as an ecological process in a Kandelia candel (Rhizophoraceae) mangal in Hong Kong. Journal of Trop. Ecol. 7: 337–348.

    Google Scholar 

  • Lehtilä, K. 1996. Optimal distribution of herbivory and localized compensatory responses within a plant. Vegetatio this volume (in press).

  • Lehtilä K., Tuomi J. & Sulkinoja M. 1994. Bud demography of the mountain birch Betula pubescens ssp. tortuosa near tree line. Ecology 75: 945–955.

    Google Scholar 

  • Lowman M. D. 1982. Effects of different rates and methods of leaf area removal on rain forest seedlings of coachwood (Ceratopetalum apetalum). Aust. J. Bot. 30: 477–483.

    Google Scholar 

  • Marquis R. J. 1988. Intra-crown variation in leaf herbivory and seed production in striped maple, Acer pensylvanicum L. (Aceraceae). Oecologia 77: 52–55.

    Google Scholar 

  • Marquis R. J. 1991. Physiological constraints on response by Ostrya virginiana (Betulaceae) to localized folivory. Can. J. Bot. 69: 1951–1955.

    Google Scholar 

  • Marquis R. J. 1992. A bite is a bite is a bite? Constraints on response to folivory in Piper arieianum (Piperaceae). Ecology 73: 143–152.

    Google Scholar 

  • Marshall D. L. 1989. Integration of response to defoliation within plants of two species of Sesbania. Funct. Ecol. 3: 207–214.

    Google Scholar 

  • Mauricio R., Bowers M. D. & Bazzaz F. A. 1993. Pattern of leaf damage affects fitness of the annual plant Raphanus sativus (Brassicaceae). Ecology 74: 2066–2071.

    Google Scholar 

  • McCarthy B. C. & Quinn J. A. 1992. Fruit maturation patterns of Carya spp. (Juglandaceae): an intra-crown analysis of growth and reproduction. Oecologia 91: 30–38.

    Google Scholar 

  • McClure M. S. & Price P. W. 1975. Competition and coexistence among sympatric Erythroneura leafhoppers (Homoptera: Cicadellidae) on American sycamore. Ecology 56: 1388–1397.

    Google Scholar 

  • McCrea K. D., Abrahamson W. G. & Weis A. E. 1985. Goldenrod ball gall effects on Solidago altissima: 14C translocation and growth. Ecology 66: 1902–1907.

    Google Scholar 

  • Miquelle D. G. 1983. Browse regrowth and consumption following sumer defoliation by moose. J. Wildl. Manag. 47: 17–24.

    Google Scholar 

  • Moran N. A. & Whitham T. G. 1990. Interspecific competition between root-feeding and leaf-galling aphids mediated by hostplant resistance. Ecology 71: 1050–1058.

    Google Scholar 

  • Obeso J. R. & Grubb P. J. 1993. Fruit maturation in the shrub Ligustrum vulgare (Oleaceae): lack of defoliation effects. Oikos 68: 309–316.

    Google Scholar 

  • Oesterheld M. & McNaughton S. J. 1988. Intraspecific variation in the response of Themeda triandra to defoliation: the effect of time of recovery and growth rates on compensatory growth. Oecologia 77: 181–186.

    Google Scholar 

  • Owen-Smith N., Robbins C. T. & Hagerman A. E. 1993. Browse and browsers: interactions between woody plants and mammalian herbivores. Tr. Ecol. Evol. 8: 158–160.

    Google Scholar 

  • Paige K. N. & Whitham T. G. 1987. Overcompensation in response to mammalian herbivory: The advantages of being eaten. Amer. Nat. 129: 407–416.

    Google Scholar 

  • Painter R. H. 1958. Resistance of plants to insects. Ann. Rev. Entom. 3: 267–290.

    Google Scholar 

  • Pilson D. 1992. Aphid distribution and the evolution of goldenrod resistance. Evolution 46: 1358–1372.

    Google Scholar 

  • Polley H. W. & Detling J. K. 1990. Grazing-mediated differentiation in Agropyron smithii: evidence from populations with different grazing histories. Oikos 57: 326–332.

    Google Scholar 

  • Price E. A. C. & Hutchings M. J. 1992. The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos 63: 376–386.

    Google Scholar 

  • Price E. A. C., Marshall C. & Hutchings M. J. 1992. Studies of growth in the clonal herb Glechoma hederacea. I. Patterns of physiological integration. J. Ecol. 80: 25–38.

    Google Scholar 

  • Quinlan J. D. 1969. Mobilization of 14C in the spring following autumn assimilation of 14CO2 by apple rootstock. J. Hort. Sci. 44: 107–110.

    Google Scholar 

  • Rosenthal, G. A. & Berenbaum, M. R. 1992. Herbivores, their interactions with secondary plant metabolites. V. II. Ecological and evolutionary processes. Second edition. Academic Press.

  • Rosenthal J. P. & Kotanen P. M. 1994. Terrestrial plant tolerance to herbivory. Tr. Ecol. Evol. 9: 145–148.

    Google Scholar 

  • Roundy B. A. & Ruyle G. B. 1989. Effects of herbivory on twig dynamics of a Sonoran desert shrub Simmondsia chinensis (Link) Schn. J. Appl. Ecol. 26: 701–710.

    Google Scholar 

  • Scott A. W. & Whalley R. D. B. 1984. The influence of intensive sheep grazing on genotypic differentiation in Danthonia linkii, D. richardsonii and D. racemosa on the New England Tablelands. Aust. J. Ecol. 9: 419–429.

    Google Scholar 

  • Senn J. & Haukioja E. 1994. Reactions of the mountain birch to bud removal: effects of severity and timing, and implications for herbivores. Funct. Ecol. 8: 494–501.

    Google Scholar 

  • Shea M. M. & Watson M. A. 1989. Patterns of leaf and flower removal: their effect on fruit growth in Chamaenerion angustifolium (fireweed). Amer. J. Bot. 76: 884–890.

    Google Scholar 

  • Snow A. A. & Stanton M. L. 1988. Aphids limit fecundity of a weedy annual (Raphanus sativus). Am. J. Bot. 75: 589–593.

    Google Scholar 

  • Spears E. E.Jr. & May P. G. 1988. Effect of defoliation on gender expression and fruit set in Passiflora incarnata. Amer. J. Bot. 75: 1842–1847.

    Google Scholar 

  • Sprugel D. G., Hinckley T. M. & Schaap W. 1991. The theory and practice of branch autonomy. Ann. Rev. Ecol. and Syst. 22: 309–334.

    Google Scholar 

  • Stephenson A. G. 1980. Fruit set, herbivory, fruit reduction, and the fruiting strategies of Catalpa speciosa (Bignoniaceae). Ecology 61: 57–64.

    Google Scholar 

  • Stickler F. C. & Pauli A. W. 1961. Leaf removal in grain sorghum. I. Effects of certain defoliation treatments on yield and components of yield. Agr. J. 53: 99–102.

    Google Scholar 

  • Thomas L. P. & Watson M. A. 1988. Leaf removal and the apparent effects of architectural constraints on development in Capsicum annuum. Amer. J. Bot. 75: 840–843.

    Google Scholar 

  • Trumble J. T., Kolodny-Hirsch D. M. & Ting I. P. 1993. Plant compensation for arthropod herbivory. Ann. Rev. of Entom. 38: 93–119.

    Google Scholar 

  • Tscharntke T. 1992. Coexistence, tritrophic interactions and density dependence in a species-rich parasitoid community. J. Anim. Ecol. 61: 59–67.

    Google Scholar 

  • Tuomi J., Nilsson P. & Éström M. 1994. Plant compensatory reponses: bud dormancy as an adaptation to herbivory. Ecology 75: 1429–1436.

    Google Scholar 

  • Tuomi J., Niemelä P., Rousi M., Sirén S. & Vuorisalo T. 1988a. Induced accumulation of foliage phenols in mountain birch: branch response to defoliation? Amer. Nat. 132: 602–608.

    Google Scholar 

  • Tuomi J., Nisula S., Vuorisalo T., Niemelä P. & Jormalainen V. 1988b. Reproductive effort of short shoots in silver birch (Betula pendula Roth). Experientia 44: 540–541.

    Google Scholar 

  • Tuomi J., Vuorisalo T., Niemelä P., Nisula S. & Jormalainen V. 1988c. Localized effects of branch defoliations on weight gain of female inflorescences in Betula pubescens. Oikos 51: 327–330.

    Google Scholar 

  • Tuomi J., Vuorisalo T., Niemelä P. & Haukioja E. 1989. Effects of localized defoliations on female inflorescences in mountain birch, Betula pubescens ssp. tortuosa. Can. J. Bot. 67: 334–338.

    Google Scholar 

  • van derMeijden E., Wijn M. & Verkaar H. J. 1988. Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos 51: 355–363.

    Google Scholar 

  • Vranjic J. A. & Gullan P. J. 1990. The effect of a sap-sucking herbivore, Eriococcus coriaceus (Homoptera: Eriococcidae), on seedling growth and architecture in Eucalyptus blakelyi. Oikos 59: 157–162.

    Google Scholar 

  • Watson M. A. 1986. Integrated physiological units in plants. Tr. Ecol. Evol. 1: 119–123.

    Google Scholar 

  • Watson M.A. & Casper B.B. 1984. Morphogenetic constraints on patterns of carbon distribution in plants. Ann. Rev. Ecol. Syst. 15: 233–258.

    Google Scholar 

  • Weis A. E. 1984. Apical dominance asserted over lateral buds by the gall of Rhabdophaga strobiloides (Diptera: Cecidomyiidae). Can. Entom. 116: 1277–1279.

    Google Scholar 

  • Weis A. E. & Kapelinski A. 1984. Manipulation of host plant development by the gall-midge Rhabdophaga strobiloides. 1984. Ecol. Entom. 9: 457–465.

    Google Scholar 

  • Whitham T. G. & Mopper S. 1985. Chronic herbivory: impacts on architecture and sex expression of pinyon pine. Science 228: 1089–1091.

    Google Scholar 

  • Whitham T.G., Maschinski J., Larson K.C. & Paige K.N. 1991. Plant responses to herbivory: the continuum from negative to positive and underlying physiological mechanisms. pp. 227–256. In: Price P. W., Lewinsohn T. M., Fernandes G. W., & W. W.Benson (eds), Plant-animal interactions, evolutionary ecology in tropical and temperate regions. Wiley, New York.

    Google Scholar 

  • Wisdom C. S., Crawford C. S. & Aldon E. F. 1989. Influence of insect herbivory on photosynthetic area and reproduction in Gutierrezia species. J. Ecol. 77: 685–692.

    Google Scholar 

  • Zangerl A. R. & Berenbaum M. R. 1990. Furanocoumarin induction in wild parsnip: Genetics and populational variation. Ecology 71: 1933–1940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquis, R.J. Plant architecture, sectoriality and plant tolerance to herbivores. Vegetatio 127, 85–97 (1996). https://doi.org/10.1007/BF00054850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054850

Key words

Navigation