Skip to main content
Log in

Benthic fluxes in San Francisco Bay

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Measurements of benthic fluxes have been made on four occasions between February 1980 and February 1981 at a channel station and a shoal station in South San Francisco Bay, using in situ flux chambers. On each occasion replicate measurements of easily measured substances such as radon, oxygen, ammonia, and silica showed a variability (±1α) of 30% or more over distances of a few meters to tens of meters, presumably due to spatial heterogeneity in the benthic community. Fluxes of radon were greater at the shoal station than at the channel station because of greater macrofaunal irrigation at the former, but showed little seasonal variability at either station. At both stations fluxes of oxygen, carbon dioxide, ammonia, and silica were largest following the spring bloom. Fluxes measured during different seasons ranged over factors of 2–3, 3, 4–5, and 3–10 (respectively), due to variations in phytoplankton productivity and temperature. Fluxes of oxygen and carbon dioxide were greater at the shoal station than at the channel station because the net phytoplankton productivity is greater there and the organic matter produced must be rapidly incorporated in the sediment column. Fluxes of silica were greater at the shoal station, probably because of the greater irrigation rates there. N + N (nitrate + nitrite) fluxes were variable in magnitude and in sign. Phosphate fluxes were too small to measure accurately. Alkalinity fluxes were similar at the two stations and are attributed primarily to carbonate dissolution at the shoal station and to sulfate reduction at the channel station. The estimated average fluxes into South Bay, based on results from these two stations over the course of a year, are (in mmol m−2 d−1): O2 = −27 ± 6; TCO2 = 23 ± 6; Alkalinity = 9 ± 2; N + N = −0.3 ± 0.5; NH3 = 1.4 ± 0.2; PO4 = 0.1 ± 0.4; Si = 5.6 ± 1.1. These fluxes are comparable in magnitude to those in other temperate estuaries with similar productivity, although the seasonal variability is smaller, probably because the annual temperature range in San Francisco Bay is smaller.

Budgets constructed for South San Francisco Bay show that large fractions of the net annual productivity of carbon (about 90%) and silica (about 65%) are recycled by the benthos. Substantial rates of simultaneous nitrification and denitrification must occur in shoal areas, apparently resulting in conversion to N2 of 55% of the particulate nitrogen reaching the sediments. In shoal areas, benthic fluxes can replace the water column standing stocks of ammonia in 2–6 days and silica in 17–34 days, indicating the importance of benthic fluxes in the maintenance of productivity.

Pore water profiles of nutrients and Rn-222 show that macrofaunal irrigation is extremely important in transport of silica, ammonia, and alkalinity. Calculations of benthic fluxes from these profiles are less accurate, but yield results consistent with chamber measurements and indicate that most of the NH3, SiO2, and alkalinity fluxes are sustained by reactions occurring throughout the upper 20–40 cm of the sediment column. In contrast, O2, CO2, and N + N fluxes must be dominated by reactions occurring within the upper one cm of the sediment-water interface. While most data support the statements made above, a few flux measurements are contradictory and demonstrate the complexity of benthic exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C., 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochim. Cosmochim. Acta 44: 1955–1965.

    Google Scholar 

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In P. L. McCall & M. J. S. Tevesz (eds.), Animal-Sediment relations. Plenum, New York: 53–102.

    Google Scholar 

  • Aller, R. C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. Mar. Res. 41: 299–322.

    Google Scholar 

  • Aller, R. C., 1984. Solute transport in bioturbated sediments: model artifacts. Trans. Am. Geophys. Un. 65: 933.

    Google Scholar 

  • Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tube dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy). J. Mar. Res. 36: 201–254.

    Google Scholar 

  • Berner, R. A., 1980. Early diagenesis: A theoretical approach. Princeton Univ. Press, Princeton, N.J.: 241 pp.

    Google Scholar 

  • Boudreau, Bernard P., 1984. On the equivalence of nonlocal and radialdiffusion models for porewater irrigation. J. Mar. Res. 42: 731–735.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, C. G. Osborne, K. R. Kaumeyer & M. C. Jenkins, 1981. Influence of water circulation rate on in situ measurements of benthic community respiration. Mar. Biol. 65: 185–190.

    Google Scholar 

  • Broecker, W. S., 1965. The application of natural radon to problems in ocean circulation. In T. Ichiye (ed.), Symposium on Diffusion in Oceans and Fresh Waters. Lamont Geol. Obs., Palisades, N.Y.: 116–145.

    Google Scholar 

  • Callender, E. & D. E. Hammond, 1982. Nutrient exchange across the sediment-water interface in the Potomac River estuary. Estuar. Coast. Shelf Sci. 15: 395–413.

    Google Scholar 

  • Carpenter, J. H., 1965. The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. Limnol. Oceanogr. 10: 141–143.

    Google Scholar 

  • Christensen, J. P., A. H. Devol & H. Smethie, 1984. Biological enhancement of solute exchange between sediments and bottom water on the Washington continental shelf. Cont. Shelf Res. 3: 9–23.

    Google Scholar 

  • Claypool, G. E. & I. R. Kaplan, 1974. The origin and distribution of methane in marine sediments. In I. R. Kaplan (ed.), Natural Gases in Marine Sediments, Plenum, New York: 99–139.

    Google Scholar 

  • Cloern, J. E., 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay? Mar. Ecol. Prog. Ser. 9: 191–202.

    Google Scholar 

  • Cloern, J. E., B. E. Cole, R. L. J. Wong & A. E. Alpine, 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay. Hydrobiologia (this volume).

  • Cole, B. E. & J. E. Cloern, 1984. Significance of biomass and light availability to phytoplankton productivity in San Francisco Bay. Mar. Ecol. Prog. Ser. 17: 15–24.

    Google Scholar 

  • Conomos, T. J., 1979. Properties and circulation of San Francisco Bay waters. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary, Pacific Div. Am. Ass. Adv. Sci., San Francisco: 47–84.

    Google Scholar 

  • D'Elia, C. F., D. M. Nelson & W. R. Boynton, 1983. Chesapeake Bay nutrient and plankton dynamics: III. The annual cycle of dissolved silicon. Geochim. Cosmochim. Acta 47: 1945–1955.

    Google Scholar 

  • Emerson, S., R. Jahnke & D. Heggie, 1984. Sediment-water exchange in shallow water environments. J. Mar. Res. 42: 709–730.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1091.

    Google Scholar 

  • Fuller, C. C., 1982. The use of Pb-210, Th-234 and Cs-137 as tracers of sedimentary processes in San Francisco Bay, California. M.S. Thesis, Univ. So. Calif.: 251 pp.

  • Gieskes, J. M. & W. C. Rogers, 1973. Alkalinity determination in interstitial waters of marine sediments. J. Sed. Petrol. 43: 272–277.

    Google Scholar 

  • Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens & R. A. Berner, 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: Report of the FOAM Group. Am. J. Sci. 277: 193–237.

    Google Scholar 

  • Grundmanis, G. V. & J. W. Murray, 1977. Nitrification and denitrification in marine sediments from Puget Sound. Limnol. Oceanogr. 22: 804–813.

    Google Scholar 

  • Hammond, D. E. & C. Fuller, 1979. The use of radon-222 to estimate benthic exchange and atmospheric exchange rates in San Francisco Bay. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Div. Am. Ass. Adv. Sci., San Francisco: 213–230.

    Google Scholar 

  • Hammond, D. E., H. J. Simpson & G. Mathieu, 1977. 222Radon distribution and transport across the sediment-water interface in the Hudson River Estuary. J. Geophys. Res. 82: 3913–3920.

    Google Scholar 

  • Harmon, D. D., P. V. Cascos & R. E. Smith, 1985. Nitrogen dynamics in a partially mixed estuary. Unpubl. ms.

  • Hartman, B. & D. E. Hammond, 1984. Gas exchange rates across the sediment-water and air-water interface in South San Francisco Bay. J. Geophys. Res. 89: 3593–3603.

    Google Scholar 

  • Hartman, B. & D. E. Hammond, 1985. Gas exchange in San Francisco Bay. Hydrobiologia (this volume).

  • Hargrave, B. T. & G. F. Connolly, 1978. A device to collect supernatant water for measurement of the flux of dissolved compounds across sediment surfaces. Limnol. Oceanogr. 23: 1005–1010.

    Google Scholar 

  • Hinga, K. R., J. M. Sieburth & G. R. Heath, 1979. The supply and use of organic material at the deep sea floor. J. Mar. Res. 37: 557–579.

    Google Scholar 

  • Howarth, R. W. & B. B. Jorgensen, 1984. Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO2− reduction measurements. Geochim. Cosmochim. Acta 48: 1807–1818.

    Google Scholar 

  • Imboden, D. M., 1981. Tracers and mixing in the aquatic environment. Habilitation Thesis, Swiss Federal Institute of Technology, Dubendorf, Switzerland: 137 pp.

  • Jannasch, H. J., C. O. Wixsen & C. D. Taylor, 1976. Undecompressed microbial populations from the Deep Sea. Appl. Environ. Microbiol. 32: 360–367.

    Google Scholar 

  • Jorgensen, B. B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–831.

    Google Scholar 

  • Jorgensen, B. B. & N. P. Revsbech, 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 111–122.

    Google Scholar 

  • Katz, A. & S. Ben-Yaakov, 1980. Diffusion of seawater ions Part II. The role of activity coefficients and ion pairing. Mar. Chem. 8: 263–280.

    Google Scholar 

  • Keir, R. S., 1980. The dissolution kinetics of biogenic calcium carbonates in sea water. Geochim. Cosmochim. Acta 34: 241–252.

    Google Scholar 

  • Korosec, M., 1979. The effects of biological activity on transport of dissolved species across the sediment-water interface of San Francisco Bay. M.S. Thesis, Univ. So. Calif.: 91 pp.

  • Lasaga, A. C., 1979. The treatment of multi-component diffusion and ion pairs in diagenetic fluxes. Am. J. Sci. 279: 324–346.

    Google Scholar 

  • Lerman, A., 1977. Migrational processes and chemical reactions in interstitial waters. In E. Goldberg, I. McCave, J. O'Brien & J. Steele (eds.), The Sea, v. 6: 695–738.

  • Li, Y.-H. & S. Gregory, 1974. Diffusion of ions in sea water in deep sea sediment. Geochim. Cosmochim. Acta 38: 703–714.

    Google Scholar 

  • Lord, C. J.,III & T. M. Church, 1983. The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization. Geochim. Cosmochim. Acta 47: 1381–1391.

    Google Scholar 

  • Manheim, F. T., 1970. The diffusion of ions in unconsolidated sediments. Earth Planet. Sci. Lett. 9: 307–309.

    Google Scholar 

  • Martens, C. S., G. W. Kipphut & V. Klump, 1980. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science 208: 285–288.

    Google Scholar 

  • McCaffrey, R. J., A. C. Myers, E. Davey, G. Morrison, M. Bender, N. Luedtke, D. Cullen, P. Froelich & G. Klinkhammer, 1980. The relation between pore water chemistry and benthics of fluxes of nutrients and manganese in Narragansett Bay, Rhode Island. Limnol. Oceanogr. 25: 31–44.

    Google Scholar 

  • Morse, J. W., 1978. Dissolution kinetics of calcium carbonate in sea water: VI. The near equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments. Am. J. Sci. 278: 344–353.

    Google Scholar 

  • Nichols, F. H. & J. K. Thompson, 1985. Time scales of change in the San Francisco Bay benthos. Hydrobiologia (this volume).

  • Nixon, S. W., 1981. Remineralization and nutrient cycling in coastal marine ecosystems. In B. J. Neilson & L. E. Cronin (eds.), Estuaries and Nutrients. The Humana Press: 112–138.

  • Nixon, S. W., J. R. Kelly, B. N. Furnas, C. A. Oviatt & S. S. Hale, 1980. Phosphorus regeneration and the metabolism of coastal marine bottom communities. In K. R. Tenore & B. C. Coull (eds.), Marine Benthic Dynamics. Univ. South Carolina Press, Columbia, S.C.: 219–242.

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt & S. S. Hale, 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. In J. M. Anderson & A. Macfadyed (eds.), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Proc. 17th Symposium British Ecological Soc., Blackwell Scient. Pub.: 269–283.

  • Officer, C. B., R. B. Biggs, J. L. Taft, L. E. Cronin, M. A. Tyler & W. R. Boynton, 1984. Chesapeake Bay anoxia: Origin, development and significance. Science 223: 22–27.

    Google Scholar 

  • Pamatmat, M. M., 1971. Oxygen consumption by the seabed IV. Shipboard and laboratory experiments. Limnol. Oceanogr. 16: 536–550.

    Google Scholar 

  • Pamatmat, M. M. & K. Banse, 1969. Oxygen consumption by the seabed II. In situ measurement to a depth of 180 m. Limnol. Oceanogr. 14: 250–259.

    Google Scholar 

  • Peterson, D. H., 1979. Sources and sinks of biologically reactive substances (oxygen, carbon, nitrogen, and silica) in San Francisco Bay. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Div. Am. Ass. Adv. Sci., San Francisco: 175–194.

    Google Scholar 

  • Peterson, D. H., R. E. Smith, S. W. Hager, D. D. Harmon, R. E. Herndon & L. E. Schemel, 1985. Interannual variability in dissolved inorganic nutrients in Northern San Francisco Bay Estuary. Hydrobiologia (this volume).

  • Rea, R. L., 1981. The flux of dissolved silica from South San Francisco Bay sediments: Observations and models. M.S. Thesis, Univ. So. Calif.: 88 pp.

  • Revsbech, N. P., J. Sorensen, T. H. Blackburn & J. P. Lomholt, 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411.

    Google Scholar 

  • Riedl, R. J., N. Huang & R. Machan, 1972. The subtidal pump: A mechanism of interstitial water exchange by wave action. Mar. Biol. 13: 210–221.

    Google Scholar 

  • Santschi, P. H., P. Bower, U. P. Nyffeler, A. Azevedo & W. S. Broecker, 1983. Measurements of the resistance to chemical transport posed by the deep sea benthic boundary layer and their significance to benthic fluxes. Limnol. Oceanogr. 28: 899–912.

    Google Scholar 

  • Smith, K. L., 1978. Benthic community respiration in the N. W. Atlantic Ocean: In situ measurements from 40–5 200 m. Mar. Biol. 47: 337–347.

    Google Scholar 

  • Smith, K. L., C. H. Clifford, A. H. Eliason, B. Walden, G. T. Rowe & J. M. Teal, 1976. A free vehicle for measuring benthic community metabolism. Limnol. Oceanogr. 21: 164–170.

    Google Scholar 

  • Smith, K. L., G. A. White & M. B. Laver, 1979. Oxygen uptake and nutrient exchange of sediments measured in situ using a free vehicle grab respirometer. Deep-Sea Res. 26A: 337–346.

    Google Scholar 

  • Smith, R. L., R. E. Herndon & D. D. Harmon, 1979. Physical and chemical properties of San Francisco Bay waters, 1969–1976. U.S. Geological Survey Open File Rep.: 79–511.

  • Spiker, E. C. & L. E. Schemel, 1979. Distribution and stable-isotope composition of carbon in San Francisco Bay. In T. J. Conomos (ed.), San Francisco Bay: The Urbanized Estuary. Pacific Div. Am. Ass. Adv. Sci., San Francisco: 195–212

    Google Scholar 

  • Vanderborght, J. P., R. Wollast & G. Billen, 1977. Kinetic models of diagenesis in disturbed sediments, Part 1: mass transfer properties and silicate diagenesis. Limnol. Oceanogr. 22: 787–793.

    Google Scholar 

  • Weiss, R. F., O. H. Kiersten & R. Ackerman, 1977. Free vehicle instrumentation for the in situ measurement of processes controlling the formation of deep-sea ferromanganese nodules. In Oceans '77 Conference Record, Marine Technol. Soc. 2-44D: 1–4.

  • Zeitzschel, B., 1980. Sediment-water interactions in nutrient dynamics. In K. R. Tenore & B. C. Coull (eds.), Marine Benthic Dynamics, Univ. South Carolina Press, Columbia, S. C.: 195–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammond, D.E., Fuller, C., Harmon, D. et al. Benthic fluxes in San Francisco Bay. Hydrobiologia 129, 69–90 (1985). https://doi.org/10.1007/BF00048688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048688

Keywords

Navigation