Skip to main content
Log in

Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration

  • Ecophysiological and Ecosystem Responses: Effects of CO2 Enrichment on Growth and Production
  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The effect of a doubling in the atmospheric CO2 concentration on the growth of vegetative whole plants was investigated. In a compilation of literature sources, the growth stimulation of 156 plant species was found to be on average 37%. This enhancement is small compared to what could be expected on the basis of CO2-response curves of photosynthesis. The causes for this stimulation being so modest were investigated, partly on the basis of an experiment with 10 wild plant species. Both the source-sink relationship and size constraints on growth can cause the growth-stimulating effect to be transient.

Data on the 156 plant species were used to explore interspecific variation in the response of plants to high CO2. The growth stimulation was larger for C3 species than for C4 plants. However the difference in growth stimulation is not as large as expected as C4 plants also significantly increased in weight (41% for C3 vs. 22% for C4). The few investigated CAM species were stimulated less in growth (15%) than the average C4 species. Within the group of C3 species, herbaceous crop plants responded more strongly than herbaceous wild species (58%vs. 35%) and potentially fast-growing wild species increased more in weight than slow-growing species (54%vs. 23%). C3 species capable of symbiosis with N2-fixing organisms had higher growth stimulations compared to other C3 species. A common denominator in these 3 groups of more responsive C3 plants might be their large sink strength. Finally, there was some tendency for herbaceous dicots to show a larger response than monocots. Thus, on the basis of this literature compilation, it is concluded that also within the group of C3 species differences exist in the growth response to high CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

LAR:

leaf area ratio

LWR:

leaf weight ratio

NAR:

net assimilation rate

PSa :

rate of photosynthesis per unit leaf area

RGR:

relative growth rate

RWR:

root weight ratio

SLA:

specific leaf area

References

  • Amthor, J. S. 1991. Respiration in a future, higher-CO2 world. Plant Cell Environ. 14: 13–20.

    Google Scholar 

  • Arnone, J. A. & Gordon, J. C. 1990. Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings ofAlnus rubra Bong. New Phytol. 116: 55–66.

    Google Scholar 

  • Baker, J. T., Allen, L. H. & Boote, K. J. 1991. Growth and yield response of rice to carbon dioxide concentration. J. Agric. Sci. 115: 313–320.

    Google Scholar 

  • Bazzaz, F. A., Garbutt, K., Reekie, E. G. & Williams, W. E. 1989. Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2. Oecologia 79: 223–235.

    Google Scholar 

  • Bhattacharya, S., Bhattacharya, N. C., Biswas, P. K. & Strain, B. R. 1985. Response of cow pea (Vigna unguiculata L.) to CO2 enrichment environment on growth, dry matter production and yield components at different stages of vegetative and reproductive growth. J. Agric. Sci. 105: 527–534.

    Google Scholar 

  • Bowman, W. D. & Strain, B. R. 1987. Interaction between CO2 enrichment and salinity stress in the C4 non-halophyteAndropogon glomeratus (Walter) BSP. Plant Cell Environ. 10: 267–270.

    Google Scholar 

  • Brown, K. R. 1991. Carbon dioxide enrichment accelerates the decline in nutrient status and relative growth rate ofPopulus tremuloides Michx. seedlings. Tree Physiol. 8: 161–173.

    Google Scholar 

  • Bunce, J. A. 1990. Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot. 65: 637–642.

    Google Scholar 

  • Bunce, J. A. & Caulfield, F. 1991. Reduced respiratory carbon dioxide efflux during growth at elevated carbon dioxide in three herbaceous perennial species. Ann. Bot. 67: 325–330.

    Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1980. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water use efficiency of plants. In: Singh, J. J. & Deepak, A. (eds), Environmental and climatic impact of coal utilization, pp. 609–622. Academic Press, New York.

    Google Scholar 

  • Carlson, R. W. & Bazzaz, F. A. 1982. Photosynthetic and growth response to fumigation with SO2 at elevated CO2 for C3 and C4 plants. Oecologia 54: 50–54.

    Google Scholar 

  • Cave, G., Tolley, L. C. & Strain, B. R. 1981. Effect of carbon dioxide enrichment on chlorophyll content, starch content and starch grain structure inTrifolium subterraneum leaves. Physiol. Plant. 51: 171–174.

    Google Scholar 

  • Clough, J. M., Peet, M. M. & Kramer, P. J. 1981. Effects of high atmospheric CO2 and sink size on rates of photosynthesis of a soybean cultivar. Plant Physiol. 67: 1007–1010.

    Google Scholar 

  • Conroy, J., Barlow, E. W. R. & Bevege, D. I. 1986. Response ofPinus radiata seedlings to carbon dioxide enrichment at different levels of water and phosphorus: growth, morphology and anatomy. Ann. Bot. 57: 165–177.

    Google Scholar 

  • Conroy, J. P., Küppers, M., Küppers, B., Virgona, J. & Barlow, E. W. R. 1988. The influence of CO2 enrichment, phosphorus deficiency and water stress on the growth, conductance and water use ofPinus radiata D. Don. Plant Cell Environ. 11: 91–98.

    Google Scholar 

  • Conroy, J. P., Milham, P. J., Mazur, M. & Barlow, E. W. R. 1990. Growth, dry weight partitioning and wood properties ofPinus radiata D. Don after 2 years of CO2 enrichment. Plant Cell Environ. 13: 329–337.

    Google Scholar 

  • Cure, J. D. & Acock, B. 1986. Crop responses to carbon dioxide doubling: A literature survey. Agric. For. Meteorol. 38: 127–145.

    Google Scholar 

  • Cure, J. D., Thomas, W. R. & Israel, D. W. 1987. Assimilate utilization in the leaf canopy and whole-plant growth of soybean during acclimation to elevated CO2. Bot. Gaz. 148: 67–72.

    Google Scholar 

  • Cure, J. D., Israel, D. W. & Rufty, T. W. 1988. Nitrogen stress effects on growth and seed yield of nonnodulated soybean exposed to elevated carbon dioxide. Crop Sci. 28: 671–677.

    Google Scholar 

  • Cure, J. D., Rufty, T. W. & Israel, D. W. 1989. Alterations in soybean leaf development and photosynthesis in a CO2-enriched atmosphere. Bot. Gaz. 150: 337–345.

    Google Scholar 

  • DeLucia, E., Sasek, T. W. & Strain, B. R. 1985. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynth. Res. 7: 175–184.

    Google Scholar 

  • Den, Hertog, J. & Stulen, I. 1990. The effects of an elevated atmospheric CO2 concentration on dry matter and nitrogen allocation. In: Goudriaan, J., Van, Keulen, H. & Van, Laar, H. H. (eds), The greenhouse effect and primary productivity in european agro-ecosystems, pp. 27–31. Pudoc, Wageningen.

    Google Scholar 

  • Den Hertog, J., Stulen, I. & Lambers, H. 1992. Assimilation, respiration and allocation of carbon inPlantago major as affected by atmospheric CO2 levels: a case study. This Volume.

  • Downton, W. J. S., Björkman, O. & Pike, C. S. 1980. Consequences of increased atmospheric concentrations of carbon dioxide. In: Pearman, G. I. (ed), Carbon dioxide and climate: Australian research, pp. 143–151. The Australian Academy of Science, Canberra.

    Google Scholar 

  • Du, Cloux, H. C., André, M., Daguenet, A. & Massimino, J. 1987. Wheat response to CO2 enrichment: growth and CO2 exchanges at two plant densities. J. Exp. Bot. 38: 1421–1431.

    Google Scholar 

  • Fajer, E. D., Bowers, M. D. & Bazzaz, F. A. 1991. Performance and allocation patterns of the perennial herb,Plantago lanceolata, in response to simulated herbivory and elevated CO2 environments. Oecologia 87: 37–42.

    Google Scholar 

  • Garbutt, K., Williams, W. E. & Bazzaz, F. A. 1990. Analysis of the different response of five annuals to elevated CO2 during growth. Ecology 71: 1185–1194.

    Google Scholar 

  • Garnier, E. 1991. Above and below-ground resource capture in herbaceous plants: Relationships with growth and biomass allocation. Trends Ecol. Evol. 6: 126–131.

    Google Scholar 

  • Gates, D. M., Strain, B. R. & Weber, J. A. 1983. Ecophysiological effects of changing atmospheric CO2 concentration. In: Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (eds), Encyclopedia of Plant Physiology, New Series, Vol. 12D. pp. 503–526. Springer Verlag, Berlin.

    Google Scholar 

  • Gifford, R. M., Lambers, H. & Morison, J. T. L. 1985. Respiration of crop species under CO2 enrichment. Physiol. Plant. 63: 351–356.

    Google Scholar 

  • Givnish, T. J. 1986. Biomechanical constraints on crown geometry in forest herbs. In: Givnish, T. J. (ed), On the economy of plant form and function, pp. 525–583. Cambridge University Press, Cambridge.

    Google Scholar 

  • Goudriaan, J. & De, Ruiter, H. E. 1983. Plant growth in response to CO2 enrichment at two levels of nitrogen and phosphorus supply. I. Dry matter, leaf area and development. Neth. J. Agric. Sci. 31: 157–169.

    Google Scholar 

  • Hicklenton, P. R. & Jolliffe, P. A. 1980. Alterations in the physiology of CO2 exchange in tomato plants grown in CO2 enriched atmospheres. Can. J. Bot. 58: 2181–2189.

    Google Scholar 

  • Hofstra, G. & Hesketh, J. D. 1975. The effects of temperature and CO2 enrichment on photosynthesis in soybean. In: Marcelle, R. (ed), Environmental and biological control of Photosynthesis, pp. 71–80. Dr. W. Junk, The Hague.

    Google Scholar 

  • Hollinger, D. Y. 1987. Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentrations in seedlings of three tree species. Tree Physiol. 3: 193–202.

    Google Scholar 

  • Hughes, A. P. & Cockshull, K. E. 1969. Effects of carbon dioxide concentration on the growth ofCallistephus chinensis cultivar Johannistag. Ann. Bot. 33: 351–365.

    Google Scholar 

  • Hunt, R., Hand, D. W., Hannah, M. A. & Neal, A. M. 1991. Response to CO2 enrichment in 27 herbaceous species. Funct. Ecol. 5: 410–421.

    Google Scholar 

  • Hurd, R. G. 1968. Effects of CO2 enrichment on the growth of young tomato plants in low light. Ann. Bot. 32: 531–542.

    Google Scholar 

  • Idso, S. D. & Kimball, B. A. 1989. Growth response of carrot and radish to atmospheric CO2 enrichment. Environ. Exp. Bot. 29: 135–139.

    Google Scholar 

  • Idso, S. B., Kimball, B. A., Anderson, M. G. & Szazek, S. R. 1986. Growth response of a succulent plant,Agave vilmoriniana, to elevated CO2. Plant Physiol. 80: 796–797.

    Google Scholar 

  • Jansen, C. M., Pot, S. & Lambers, H. 1986. The influence of CO2 enrichment of the atmosphere and NaCl on growth and metabolism ofUrtica dioica L. In: Marcelle, R., Clijsters, H. & Van, Poucke, M. (eds), Biological Control of Photosynthesis, pp. 143–146. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Johnson, R. H. & Lincoln, D. E. 1990. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia 84: 103–110.

    Google Scholar 

  • Jolliffe, P. A. & Ehret, D. L. 1985. Growth of bean plants at elevated carbon dioxide concentrations. Can. J. Bot. 63: 2021–2025.

    Google Scholar 

  • Kimball, B. A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J. 75: 779–788.

    Google Scholar 

  • King, K. M. & Greer, D. H. 1986. Effects of carbon dioxide enrichment and soil water on maize. Agron. J. 78: 515–521.

    Google Scholar 

  • Koch, K. E., Jones, P. H., Avigne, W. T. & Allen, L. H. 1986. Growth, dry matter partitioning, and diurnal activities of RUBP carboxylase in citrus seedlings maintained at two levels of CO2. Physiol. Plant. 67: 477–484.

    Google Scholar 

  • Konings, H., Koot, E. & Tijman-de Wolf, A. 1989. Growth characteristics, nutrient allocation and photosynthesis ofCarex species from floating fens. Oecologia 80: 111–121.

    Google Scholar 

  • Kriedemann, P. E. & Wong, S. C. 1984. Growth response and photosynthetic acclimation to CO2: comparative behaviour in two C3 crop species. Acta Hortic. 162: 113–120.

    Google Scholar 

  • Lambers, H. & Poorter, H. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res., in press.

  • Lambers, H., Freijsen, N., Poorter, H., Hirose, T. and Van der, Werf, A. 1989. Analyses of growth based on net assimilation rate and nitrogen productivity. In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 1–17. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Larigauderie, A., Hilbert, D. W. & Oechel, W. C. 1988. Effect of CO2 enrichment and nitrogen availability on resource acquisition and resource allocation in a grass,Bromus mollis. Oecologia 77: 544–549.

    Google Scholar 

  • MacDowall, F. D. H. 1982. Effects of light intensity and CO2 concentration on the kinetics of 1st month growth and nitrogen fixation of alfalfa. Can. J. Bot. 61: 731–740.

    Google Scholar 

  • Marks, S. & Clay, K. 1990. Effects of CO2 enrichment, nutrient addition and fungal endophyte-infection on the growth of two grasses. Oecologia 84: 207–214.

    Google Scholar 

  • Mauney, J. R., Fry, K. E. & Guinn, G. 1978. Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum and sunflower. Crop Sci. 18: 259–263.

    Google Scholar 

  • Morison, J. I. L. & Gifford, R. M. 1984. Plant growth and water use with limited supply in high CO2 concentrations II. Plant dry weight, partitioning and water use efficiency. Aust. J. Plant Physiol. 11: 375–384.

    Google Scholar 

  • Mousseau, M. & Enoch, H. Z. 1989. Carbon dioxide enrichment reduces shoot growth in sweet chestnut seedlings (Castanea sativa Mill.). Plant Cell Environ. 12: 927–934.

    Google Scholar 

  • Musgrave, M. E., Strain, B. R. & Siedow, J. N. 1986. Response of two pea hybrids to CO2 enrichment: A test of the energy overflow hypothesis for alternative respiration. Proc. Natl. Acad. Sci. USA 83: 8157–8161.

    Google Scholar 

  • Nafziger, E. D. & Koller, H. R. 1976. Influence of leaf starch concentration on CO2 assimilation in soybean. Plant Physiol. 57: 560–563.

    Google Scholar 

  • Neales, T. F. & Nicholls, A. O. 1978. Growth response of young wheat plants to a range of ambient CO2 levels. Aust. J. Plant Physiol. 5: 45–59.

    Google Scholar 

  • Nobel, P. S. & Garcia de Cortazar, V. 1991. Growth and predicted productivity ofOpuntia ficus-indica for current and elevated carbon dioxide. Agron. J. 83: 224–230.

    Google Scholar 

  • Nobel, P. S. & Hartsock, T. L. 1986. Short-term and long-term responses of crassulacean acid metabolism plants to elevated CO2. Plant Physiol. 82: 604–606.

    Google Scholar 

  • Norby, R. J. 1987. Nodulation and nitrogenase activity in nitrogen fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol. Plant. 71: 77–82.

    Google Scholar 

  • Norby, R. J., O'Neill, E. G. & Luxmoore, R. J. 1986. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition ofQuercus alba seedlings in nutrient-poor soil. Plant Physiol. 82: 83–89.

    Google Scholar 

  • Norby, R. J., O'Neill, E. G., Hood, W. G. & Luxmoore, R. J. 1987. Carbon allocation, root exudation and mycorrhizal colonization ofPinus echinata seedlings growth under CO2 enrichment. Tree Physiol. 3: 203–210.

    Google Scholar 

  • Oberbauer, S. F., Strain, B. R. & Fetcher, N. 1985. Effect of CO2 enrichment on seedling physiology and growth of two tropical tree species. Physiol. Plant. 65: 352–356.

    Google Scholar 

  • Oberbauer, S. F., Sionit, N., Hastings, S. J. & Oechel, W. C. 1986. Effects of CO2 enrichment and nutrition on growth, photosynthesis, and nutrient concentration of alaska tundra species. Can. J. Bot. 64: 2993–2998.

    Google Scholar 

  • O'Neill, E. G., Luxmoore, R. J. & Norby, R. J. 1987a. Elevated atmospheric CO2 effects on seedling growth, nutrient uptake, and rhizosphere populations ofLiriodendron tulipifera L. Plant Soil 104: 3–11.

    Google Scholar 

  • O'Neill, E. G., Luxmoore, R. J. & Norby, R. J. 1987b. Increases in mycorrhizal colonization and seedling growth inPinus echinata andQuercus alba in an enriched CO2 atmosphere. Can. J. For. Res. 17: 878–883.

    Google Scholar 

  • Overdieck, D., Reid, C. & Strain, B. R. 1988. The effects of preindustrial and future CO2 concentrations on growth, dry matter production and the C/N relationship in plants at low nutrient supply:Vigna unguiculata, Abelmoschus esculentus andRaphanus sativus. Angew. Bot. 62: 119–134.

    Google Scholar 

  • Paez, A., Hellmers, H. & Strain, B. R. 1983. CO2 enrichment, drought stress and growth of alaska pea plants (Pisum sativum). Physiol. Plant. 58: 161–165.

    Google Scholar 

  • Paez, A., Hellmers, H. & Strain, B. R. 1984. Carbon dioxide enrichment and water stress interaction on growth of two tomato cultivars. J. Agric. Sci. 102: 687–693.

    Google Scholar 

  • Patterson, D. T. 1986. Responses of soybean and three C4 grass weeds to CO2 enrichment during drought. Weed Sci. 34: 203–210.

    Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1980. Potential effects of global atmospheric CO2 enrichment on the growth and competitiveness of C3 and C4 weed and crop plants. Weed Sci. 28: 71–75.

    Google Scholar 

  • Patterson, D. T. & Flint, E. P. 1982. Interacting effects of CO2 and nutrient concentration. Weed Sci. 30: 389–394.

    Google Scholar 

  • Patterson, D. T., Flint, E. P. & Beyers, J. L. 1984. Effects of CO2 enrichment on competition between a C4 weed and a C3 crop. Weed Sci. 32: 101–105.

    Google Scholar 

  • Patterson, D. T., Higsmith, M. T. & Flint, E. 1988. Effects of temperature and CO2 concentration on the growth of cotton (Gossypium hirsutum), spurred anoda (Anoda cristata), and velvetleaf (Abutilon theophrasti). Weed Sci. 36: 751–757.

    Google Scholar 

  • Pearcy, R. W. & Björkman, O. 1983. Physiological effects. In: Lemon, E. R. (ed), CO2 and plants, the response of plants to rising levels of atmospheric carbon dioxide, pp. 65–105. Westview Press, Colorado.

    Google Scholar 

  • Peet, M. M. 1986. Acclimation to high CO2 in monoecious cucumbers. I. Vegetative and reproductive growth. Plant Physiol. 80: 59–62.

    Google Scholar 

  • Poorter, H. 1989. Interspecific variation in relative growth rate: On ecological causes and physiological consequences. In: Lambers, H., Cambridge, M. L., Konings, H. & Pons, T. L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, pp. 45–68. SPB Academic Publishing, The Hague.

    Google Scholar 

  • Poorter, H. & Remkes, C. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83: 553–559.

    Google Scholar 

  • Poorter, H., Pot, C. S. & Lambers, H. 1988. The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and respiration ofPlantago major. Physiol. Plant. 73: 553–559.

    Google Scholar 

  • Poorter, H., Remkes, C. & Lambers, H. 1990. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94: 621–627.

    Google Scholar 

  • Potvin, C. & Strain, B. R. 1985. Effects of CO2 enrichment and temperature on growth of two C4 weeds,Echinochloa crus-galli andEleusine indica. Can. J. Bot. 63: 1495–1499.

    Google Scholar 

  • Radoglou, K. M. & Jarvis, P. G. 1990. Effects of CO2 enrichment on four poplar clones. I. Growth and leaf anatomy. Ann. Bot. 65: 617–626.

    Google Scholar 

  • Reekie, E. G. & Bazzaz, F. A. 1989. Competition and patterns of resource use among seedlings of five tropical trees grown at ambient and elevated CO2. Oecologia 79: 212–222.

    Google Scholar 

  • Riechers, G. H. & Strain, B. R. 1988. Growth of blue grama (Bouteloua gracilis) in response to atmospheric CO2 enrichment. Can. J. Bot. 66: 1570–1573.

    Google Scholar 

  • Rogers, H. H., Cure, J. D., Thomas, J. F. & Smith, J. M. 1984. Influence of elevated CO2 on growth of soybean plants. Crop Sci. 24: 361–366.

    Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1988. Effects of carbon dioxide enrichment on the growth and morphology of kudzu (Pueraria lobata). Weed Sci. 36: 28–36.

    Google Scholar 

  • Sasek, T. W. & Strain, B. R. 1991. Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. Amer. J. Bot. 78: 69–75.

    Google Scholar 

  • Sasek, T. W., DeLucia, E. H. & Strain, B. R. 1985. Reversibility of photosynthetic inhibition in cotton after long-term exposure to elevated CO2 concentrations. Plant Physiol. 78: 619–622.

    Google Scholar 

  • Sionit, N. 1983. Response of soybean to two levels of mineral nutrition in CO2-enriched atmosphere. Crop Sci. 23: 329–333.

    Google Scholar 

  • Sionit, N. & Patterson, D. T. 1984. Responses of C4 grasses to atmospheric CO2 enrichment. I. Effect of irradiance. Oecologia 65: 30–34.

    Google Scholar 

  • Sionit, N., Mortensen, D. A., Strain, B. R. & Hellmers, H. 1981. Growth response of wheat to CO2 enrichment and different levels of mineral nutrition. Agron. J. 73: 1023–1027.

    Google Scholar 

  • Sionit, N., Hellmers, H. & Strain, B. R. 1982. Interaction of atmospheric CO2 enrichment and irradiance on plant growth. Agron. J. 74: 721–725.

    Google Scholar 

  • Sionit, N., Strain, B. R., Hellmers, H., Riechers, G. H. & Jaeger, C. H. 1985. Long-term atmospheric CO2 enrichment affects the growth and development ofLiquidambar styraciflua andPinus taeda seedlings. Can. J. For. Res. 15: 468–471.

    Google Scholar 

  • Sionit, N., Strain, B. R. & Flint, E. P. 1987. Interaction of temperature and CO2 enrichment on soybean: Growth and dry matter partitioning. Can. J. Plant Sci. 67: 59–67.

    Google Scholar 

  • Smith, S. D., Strain, B. R. & Sharkey, T. D. 1987. Effects of CO2 enrichment on four great basin grasses. Funct. Ecol. 1: 139–143.

    Google Scholar 

  • Spencer, W. & Bowes, G. 1986. Photosynthesis and growth of water hyacinth under CO2 enrichment. Plant Physiol. 82: 528–533.

    Google Scholar 

  • Thomas, R. B. & Strain, B. R. 1991. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 96: 627–634.

    Google Scholar 

  • Thomas, R. B., Richter, D. D., Ye, H., Heine, P. R. & Strain, B. R. 1991. Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88: 415–421.

    Google Scholar 

  • Tolley, L. C. & Strain, B. R. 1984. Effects of CO2 enrichment on growth ofLiquidambar styraciflua andPinus taeda seedlings under different irradiance levels. Can. J. For. Res. 14: 343–350.

    Google Scholar 

  • Williams, W. E., Garbutt, K. & Bazzaz, F. A. 1988. The response of plants to elevated CO2. V. Performance of an assemblage of serpentine grassland herbs. Environ. Exp. Bot. 28: 123–130.

    Google Scholar 

  • Wong, S. C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. II. Non-structural carbohydrate content and its effect on growth parameters. Photosynth. Res. 23: 171–180.

    Google Scholar 

  • Wong, S. C. 1993. Interaction between elevated atmospheric partial pressure of CO2 and humidity on plant growth: comparison between cotton and radish. Vegetatio 104/105: 211–221.

    Google Scholar 

  • Wray, S. M. & Strain, B. R. 1986. Response of two oldfield perennials to interactions of CO2 enrichment and drought stress. Amer. J. Bot. 73: 1486–1491.

    Google Scholar 

  • Wulff, R. D. & Strain, B. R. 1982. Effects of CO2 enrichment on growth and photosynthesis inDesmodium paniculatum. Can. J. Bot. 60: 1084–1091.

    Google Scholar 

  • Ziska, L. H., Hogan, K. P., Smith, A. P. & Drake, B. C. 1991. Growth and photosynthetic response of nine tropical species with long-term exposure to elevated carbon dioxide. Oecologia 86: 38–389.

    Google Scholar 

  • Plants ofPlantago major ssp.pleiosperma 32 days after germination, grown on a container with nutrient solution. Photograph by E. Leeuwinga.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poorter, H. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104, 77–97 (1993). https://doi.org/10.1007/BF00048146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048146

Keywords

Navigation