Skip to main content
Log in

Transfer of the ability to flower in winter wheat via callus tissue regenerated from immature inflorescences

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Using two wheat varieties (Triticum aestivum L., winter ‘Grana’ and spring ‘Jara’) the ability of callus from immature inflorescences to differentiate into new plants was studied. In the case of the winter wheat the requirement for vernalization of the newly developed plants to attain the ability for heading was investigated.

Callus was developed from 1–2 mm fragments of immature inflorescences, 5–10 mm in length, on Murashige and Skoog medium containing 1 mg l-1 2,4-d, 3% sucrose and 0.6% agar, at 25° C and in continuous light of about 6.4 W m-2 PAR energy. After 6 weeks of culture green centres of differentiation were observed. During the following 4 weeks culture on MS medium free of 2,4-d, leaf-like structures as well as a small number of roots were obtained. The regenerants were rooted on a half-strength MS medium, then transferred to pots of soil and placed in a glasshouse with 16 h photoperiod at a temperature day/night 23/17° C.

After about 6 weeks of culture in the glasshouse, almost all regenerants (98%) headed and were fertile, producing normal seeds, including the winter variety. The heading of winter plants under conditions excluding vernalization indicates that the callus tissue derived from a generative organ transmits the state of generative induction onto the developing new plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-d :

dichlorophenoxyacetic acid

MS:

Murashige & Skoog (1962) medium

H:

Hoagland medium

PAR:

photosynthetically active radiation

References

  • Ahuja P S, Pental D & Cocking E C (1982) Plant regeneration from leaf base callus and cell suspensions of Triticum aestivum. Z. Pflanzenzuchtg. 89: 139–144

    Google Scholar 

  • Bajaj Y P S (1990) Biotechnology in Agriculture and Forestry, Vol. 13. Wheat. Springer Verlag, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Bhaskaran S & Smith R H (1990) Regeneration in cereal tissue culture: A Review. Crop Sci. 30: 1328–1337

    Google Scholar 

  • Biesaga-Kościelniak J, Marcińska I & Dubert F (1994a) Stimulation the effectiveness of partial vernalization to isolated embryos of winter wheat by the extracts from plants of different stages of generative development. Acta Physiol. Plant. 1: 27–32

    Google Scholar 

  • Biesaga-Kościelniak J, Marcińska I & Dubert F (1994b) The effectiveness of flowering stimulation in winter wheat under the influence of extracts from plants of various degrees of generative induction. Bull. Polon. Acad. Sci. (In press.)

  • Butenko R G, Dzhardemaliev Zh K & Gavrilova N F (1986) Plant regeneration from callus tissues originated from different organs of winter wheat. Physiol. Rast. 33: 837–842

    Google Scholar 

  • Dubert F, Marcińska I, Biesaga-Kościelniak J & Filek M (1989) The application of tissue cultures in the studying of the thermoinduction of generative development of winter wheat (in Polish). Bull. IHAR Vol. 171–172: 153–160

    Google Scholar 

  • Dubert F, Marcińska I & Kuchalska J (1991) Influence of sucrose and mannitol concentrations on effectiveness of the in vitro vernalization of isolated winter wheat germs. Bull. Acad. Sci., Ser. Sci. Biol. 4391: 57–67

    Google Scholar 

  • Dubert F, Marcińska I, Biesaga-Kościelniak J & Szmider I (1993) The effectiveness of vernalization of immature embryos of winter wheat var. Grana as related to age and exogenous phytohormones. J. Agron. Crop Sci. 170: 234–242

    Google Scholar 

  • Lhotowa M & Kucera L (1990) Embryogenic callus induction and plant regeneration from cultured immature embryos of wheat. Genet. Slecht. 26: 257–264

    Google Scholar 

  • MacKinnon C, Gunderson G & Nabors M W (1987) High efficiency plant regeneration by somatic embryogenesis from callus of mature embryo explants of bread wheat (Triticum aestivum) and grain sorghum (Sorghum bicolor) In Vitro Cell. Develop. Biol. 23: 443–448

    Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 15: 473–497

    Google Scholar 

  • Ozias-Akins P & Vasil I K (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (Wheat): Evidence for somatic embryogenesis. Protopl. 110: 95–105

    Google Scholar 

  • Sears R G & Deckard E L (1982) Tissue culture variability in wheat: Callus induction and plant regeneration. Crop Sci. 22: 546–550

    Google Scholar 

  • Sharma H C & Gill B S (1982) Effect of embryo age and culture media on plant growth and vernalization response in winter wheat. Euphyt. 31: 629–634

    Google Scholar 

  • Sharma H C, Gill B S & Sears R G (1984) Inflorescence culture of Wheat-Agropyron hybrids: Callus induction, plant regeneration, and potential in overcoming sterility barriers. Plant Cell Tiss. Org. Cult. 3: 247–255

    Google Scholar 

  • Valentine J & Middleton B T (1987) The effect of embryo culture on reproductive development in winter cereals. Cereal Res. Commun. 15: 161–165

    Google Scholar 

  • Vasil I K & Vasil V (1986) Regeneration in cereal and other grass species. In: Cell Culture and Somatic Cell Genetics of Plants, Vol. 3: Plant Regeneration and Genetic Variability. Academic Press, Orlando. 121–150

    Google Scholar 

  • Went F W (1957) The experimental control of plant growth. New York, The Ronald Press Comp. 77–80

    Google Scholar 

  • Whelan E D P & Shaalie G B (1992) Vernalization of embryogenic callus from immature embryos of winter wheat. Crop Sci. 32: 78–80

    Google Scholar 

  • Zimny J & Lorz H (1989) High frequency of somatic embryogenesis and plant regeneration of rye (Secale cereale L.). Plant Breed. 102: 89–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcińska, I., Dubert, F. & Biesaga-Kościelniak, J. Transfer of the ability to flower in winter wheat via callus tissue regenerated from immature inflorescences. Plant Cell Tiss Organ Cult 41, 285–288 (1995). https://doi.org/10.1007/BF00045094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00045094

Key words

Navigation