Skip to main content
Log in

The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The octopine synthase (ocs or ocs-like) element has been previously reported to be responsive to the plant hormones, auxin, salicylic acid, and methyl jasmonate. Using transient assays with carrot protoplasts, we have demonstrated that an ocs element from the soybean auxin-inducible GH2/4 promoter is not only activated by strong auxins (i.e, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, α-naphthalene acetic acid) and salicylic acid, but also by weak auxin analogues (β-naphthalene acetic acid), inactive auxin analogs (i.e., 2,3-dichlorophenoxyacetic acid, 2,4,6-trichlorophenoxyacetic acid), and inactive salicylic acid analogs (3-hydroxybenzoic acid and 4-hydroxybenzoic acid). Our results indicate that the ocs element in the GH2/4 promoter is not selectively induced by plant hormones and might function similarly to tandem AP-1 sites in some animal glutathione S-transferase (GST) genes. The ocs element, like the AP-1 sites in animal GST promoters, may be induced not only by certain hormones but also by some non-hormonal stress-inducing or electrophilic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GST:

glutathione S-transferase

MUG:

4-methyl-umbelliferyl-glucuronide

GUS:

β-glucuronidase

2,4-D:

2,4-dichlorophenoxyacetic acid

2,3-D:

2,3-dichlorophenoxyacetic acid

2,4,5-T:

2,4,5-trichlorophenoxyacetic acid

2,4,6-T:

2,4,6-trichlorophenoxyacetic acid

NAA:

naphthalene acetic acid

SA:

salicylic acid

SARE :

putative salicylic acid-responsive element

BA:

benzoic acid

UTR:

untranslated region

nos :

nopaline synthase

ocs :

octopine synthase

mas :

mannopine synthase

ocs :

element-(−)46 CaMV 35S promoter-GUS reporter gene: the ocs element fused to a minimal −46 cauliflower mosaic virus 35S promoter fused to a GUS reporter gene with a 3′ nos untranslated region

References

  1. Ainley WM, Walker JC, Nagao RT, Key JL: Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263: 10658–10666 (1988).

    PubMed  Google Scholar 

  2. An G, Costa M, Ha SB: Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2: 225–233 (1990).

    Article  PubMed  Google Scholar 

  3. Audus LJ: Plant Growth Substances, vol. 1. Leonard Hill, London (1972).

    Google Scholar 

  4. Ausubel F, Brent R, Kingston RE, Moore DD, Siedman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology, vol. 2. Wiley, New York (1987).

    Google Scholar 

  5. Barnes W: Variable patterns of expression of luciferase in transgenic tobacco leaves. Proc Natl Acad Sci USA 87: 9183–9187 (1990).

    PubMed  Google Scholar 

  6. Ballas N, Wong L-M, Theologis A: Identification of the auxin-responsive element, AuxRE, in the primary indoleacetic acid-inducible gene, PS-IAA4/5, of pea (Pisum sativum). J Mol Biol 233: 580–596 (1993).

    Article  PubMed  Google Scholar 

  7. Benfey PN, Ren L, Chua N-H: The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8: 2195–2202 (1989).

    Google Scholar 

  8. Boss WF, Ruesink AW: Isolation and characterization of Concanavalin A-labeled plasma membranes from carrot suspension culture cells. Plant Physiol 64: 1005–1011 (1979).

    Google Scholar 

  9. Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG: The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8: 4197–4204 (1989).

    PubMed  Google Scholar 

  10. Chen Z, Klessig DF: Identification of a soluble salicylic acid-binding protein that may function in signal transduction in plant disease-resistance response. Proc Natl Acad Sci USA 88: 8179–8183.

  11. Curran T, Franza RB: Fos and Jun: the AP-1 connection. Cell 55: 395–397 (1988).

    Article  PubMed  Google Scholar 

  12. Czarnecka E, Edelman L, Schoffl F, Key JL: Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs. Plant Mol Biol 3: 45–58 (1984).

    Google Scholar 

  13. Czarnecka E, Nagao RJ, Key JL, Gurley WB: Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol 8: 1113–1122 (1988).

    PubMed  Google Scholar 

  14. Daniel V: Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol 28: 173–207 (1993).

    PubMed  Google Scholar 

  15. Droog FNJ, Hooykaas PJJ, Libbenga KR, van der Zaal EJ: Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol 21: 965–972 (1993).

    Article  PubMed  Google Scholar 

  16. Dudler R, Hertig C, Rebmann G, Bull J, Mauch F: A pathogen-induced wheat gene encodes a protein homologous to glutathione S-transferases. Plant Microb Interact 4: 14–18 (1991).

    Google Scholar 

  17. Ellis JG, Llewellyn DJ, Walker JC, Dennis ES, Peacock WJ: The ocs element: a 16 base pair palindrome essential for activity of the octopine synthase enhancer. EMBO J 6: 3203–3208 (1987).

    Google Scholar 

  18. Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WS: Does the ocs-element occur as a functional component of the promoter of plant genes?. Plant J 4: 433–443 (1993).

    Article  PubMed  Google Scholar 

  19. Frilling RS, Bergelson S, Daniel V: Two adjacent AP-1-like binding sites from the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci USA 89: 668–672 (1992).

    PubMed  Google Scholar 

  20. Goldsbrough AP, Albrecht H, Stratford R: Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3: 563–571 (1993).

    PubMed  Google Scholar 

  21. Goodall G, Wiebauer K, Filipowicz W: Analysis of pre-mRNA processing in transfected plant protoplasts. Meth Enzymol 181: 148–155 (1990).

    PubMed  Google Scholar 

  22. Guilfoyle TJ: Auxin-regulated genes and promoters. In: Libbenga KR, Hall MA (eds) Biochemistry and Molecular Biology of Plant Hormones. Elsevier, in press (1994).

  23. Guilfoyle TJ, Hagen G, Li Y, Ulmasov T, Liu Z, Strabala T, Gee M: Auxin-regulated transcription. Aust J Plant Physiol 20: 489–502 (1993).

    Google Scholar 

  24. Hagen G, Kleinschmidt AJ, Guilfoyle TJ: Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections. Planta 162: 147–153 (1984).

    Google Scholar 

  25. Hagen G, Guilfoyle TJ: Rapid induction of selective transcription by auxin. Mol Cell Biol 5: 1197–1203 (1985).

    PubMed  Google Scholar 

  26. Hagen G, Uhrhammer N, Guilfoyle TJ: Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem 263: 6442–6446 (1988).

    PubMed  Google Scholar 

  27. Hagen G, Martin G, Li Y, Guilfoyle TJ: Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17: 567–579 (1991).

    PubMed  Google Scholar 

  28. Jefferson RA: Assay for chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  29. Katagiri F, Lam E, Chua N-H: Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340: 727–730 (1989).

    Article  PubMed  Google Scholar 

  30. Katagiri F, Chua N-H: Plant transcription factors: present knowledge and future challenges. Trends Genet 8: 22–27 (1992).

    Article  PubMed  Google Scholar 

  31. Kim SR, Kim Y, An G: Identification of methyl jasmonate and salicylic acid response elements from nopaline synthase (nos) promoter. Plant Physiol 103: 97–103 (1993).

    Article  PubMed  Google Scholar 

  32. Kim Y, Buckley K, Costa MA, An G: A 20 nucleotide upstream element is essential for the nopaline synthase (nos) promoter activity. Plant Mol Biol 24: 105–117 (1994).

    PubMed  Google Scholar 

  33. Langridge WHR, Fitzgerald KJ, Koncz C, Schell J, Szalay AA. Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci USA 86: 3219–3223 (1989).

    Google Scholar 

  34. Lam E, Katagiri F, Chua N-H: Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem 265: 9909–9913 (1990).

    PubMed  Google Scholar 

  35. Li Y, Liu Z-B, Shi X, Hagen G, Guilfoyle TJ: Auxin-inducible elements (AuxREs) in the soybean SAUR promoters. Plant Physiol; in press (1994).

  36. Liu X, Lam E: Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem 269: 668–675 (1994).

    PubMed  Google Scholar 

  37. Liu Z-B, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ: The soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6: 645–657 (1994).

    PubMed  Google Scholar 

  38. McClure BA, Guilfoyle TJ: Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol 9: 611–623 (1987).

    Google Scholar 

  39. McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ: Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1: 229–239 (1989).

    Article  PubMed  Google Scholar 

  40. Ney PA, Sorrentino BB, McDonagh KT, Nienhuis AW: Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Devel 4: 993–1006 (1990).

    PubMed  Google Scholar 

  41. Okuda A, Imagawa M, Sakai M, Muramatsu M: Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J 10: 1793–1802 (1990).

    Google Scholar 

  42. Praendl R, Kutchan TM: Nucleotide sequence of the gene for a glutathione S-transferase from cell suspension cultures of Silene cucubalus. Plant Physiol 99: 1729–1731 (1992).

    Google Scholar 

  43. Qin X-F, Holuigue L, Horvath DM, Chua N-H: Immediate early activation by salicylic acid via the cauliflower mosaic virus as-1 element. Plant Cell 6: 863–874 (1994).

    Article  PubMed  Google Scholar 

  44. Raskin I, Tumer IM, Melander WR: Regulation of heat production in the inflorescences of Arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86: 2214–2218 (1989).

    Google Scholar 

  45. Rushmore TH, Pickett CB: Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem 268: 11475–11478 (1993).

    PubMed  Google Scholar 

  46. Singh K, Dennis ES, Ellis JG, Llewellyn DJ, Tokuhisa JG, Wahleithner JA, Peacock WJ: OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell 1: 891–903 (1990).

    Google Scholar 

  47. Takahashi Y, Kuroda H, Tanaka T, Machida Y, Takebe I, Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G[!] to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci 86: 9279–928 (1989).

    PubMed  Google Scholar 

  48. Takahashi Y, Kusaba M, Hiraoka Y, Nagata T: Characterization of the auxin-regulated par gene from tobacco mesophyll protoplasts. Plant J 1: 327–332 (1991).

    Article  PubMed  Google Scholar 

  49. Tokuhisa JG, Singh K, Dennis ES, Peacock WJ: A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element. Plant Cell 2: 215–224 (1990).

    Article  PubMed  Google Scholar 

  50. van der Zaal EJ, Droog FNJ, Boot CJM, Hensgens LAM, Hoge JHC, Schilperoort RA, Libbenga KR: Promoters of auxin induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol 16: 983–998 (1991).

    PubMed  Google Scholar 

  51. Walker JC, Key JL: Isolation of cloned cDNAs to auxin-responsive poly(A+) RNAs of elongating soybean hypocotyl. Proc Natl Acad Sci USA 79: 7185–7189 (1982).

    Google Scholar 

  52. Zhang B, Foley RC, Singh KB: Isolation and characterization of two related Arabidopsis ocs-element bZIP binding proteins. Plant J 4: 711–716 (1993).

    Article  PubMed  Google Scholar 

  53. Zhang B, Singh KB: ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci USA 91: 2507–2511 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulmasov, T., Hagen, G. & Guilfoyle, T. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol 26, 1055–1064 (1994). https://doi.org/10.1007/BF00040688

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040688

Key words

Navigation