Skip to main content
Log in

Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy

  • Mini-reviews
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Tobacco and tomato plants were generated exhibiting insect resistance due to the introduction of modified cryIA(b) and cryIC genes of Bacillus thuringiensis. Limited modifications at selected regions of the coding sequences of both genes are sufficient to obtain resistance against Spodoptera exigua, Heliothis virescens and Manduca sexta. The criteria used to modify both genes demonstrate that the removal of sequence motifs potentially resulting in premature polyadenylation and transcript instability causes increased insect resistance. The expression of a cryIC-cryIA(b) fusion resulting in protection against S. exigua, H. virescens and M. sexta demonstrates the potential of expressing translational fusions, not only to broaden the insect resistance of transgenic plants, but also to simultaneously employ different gene classes in resistance management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barton KA, Whiteley HR, Yang N-S. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol 85: 1103–1109 (1987).

    Google Scholar 

  2. Brawerman G: Determinants of messenger RNA stability. Cell 48: 5–6 (1987).

    Google Scholar 

  3. Brawerman G: Mechanisms of mRNA decay. Trends Biotechnol 8: 171–174 (1990).

    Google Scholar 

  4. Dean C, Tamaki S, Dunsmuir P, Favreau M, Katayama C, Dooner H, Bedbrook J: mRNA transcripts of several plants are polyadenylated at multiple sites in vivo. Nucl Acids Res 14: 2229–2240 (1986).

    Google Scholar 

  5. Delannay X, Bradley JL., Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischof DA: Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect cotrol protein. Bio/technology 7: 1265–1270 (1989).

    Google Scholar 

  6. De Vries S, Hoge H, Bisseling T: Isolation of total and polysomal RNA from plant tissues. In: Gelvin B, Schilperoort RA, Verma DPS (eds) Plant Molecular Biology Manual, pp. B6/1-B6/13. Kluwer Academic Publishers, Dordrecht, The Netherlands (1991).

    Google Scholar 

  7. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT: Insect tolerant transgenic tomato plants. Bio/technol. 5: 807–813 (1987).

    Google Scholar 

  8. Ferré J, Real MD, Van Rie J, Jansens S, Peferoen M: Resistance of the Bacillus thuringiensis bioinsecticide in field population of Plutella xylostella is due to a change in a midgut receptor. Proc Natl Acad Sci USA 88: 5119–5123 (1991).

    Google Scholar 

  9. Gallie DR, Sleat DA, Watts JW, Turner PC, Wilson TMA: A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl Acids Res 15: 8693–8711 (1987).

    Google Scholar 

  10. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 472–483 (1989).

    Google Scholar 

  11. Hofmann C, Vanderbruggen H, Höfte H, Van Rie J, Jansens S, Van Mellaert H: Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci USA 85: 7844–7848 (1988).

    Google Scholar 

  12. Höfte H, Whiteley HR: Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53: 242–255 (1989).

    Google Scholar 

  13. Honée G, van der Salm T, Visser B: Nucleotide sequence of a crystal protein isolated from B. thuringiensis subspecies entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucl Acid Res 16: 6240 (1988).

    Google Scholar 

  14. Honée G, Vriezen W, Visser B: A translation fusion product of two different insecticidal crystal protein genes of Bacillus thuringiensis exhibits an enlarged insecticidal spectrum. Appl Environm Microbiol 56: 823–825 (1990).

    Google Scholar 

  15. Honnée G: Strategies to increase crystal protein gene expression levels in transgenic plants. In: The specificity of Bacillus thuringiensis crystal proteins, pp 85–103. Ph.D. thesis (1992).

  16. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  17. Jefferson R: Assay chimeric genes in plants: The gus gene fusion system. Plant Mol Biol Rep 5: 387–405 (1987).

    Google Scholar 

  18. Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    Google Scholar 

  19. Kay R, Chan A, Daly M, McPherson J: Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236: 1299–1302 (1987).

    Google Scholar 

  20. Koncz C, Schell J: The promoter of TL-DNA gene 5 controls the tissue specific expression of chimearic genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396 (1986).

    Google Scholar 

  21. Koncz C, Mayerhofer R, Koncz-Kahlman Z, Nawrath C, Reiss B, Redei GP, Schell J: Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J. 9: 1337–1346 (1990).

    Google Scholar 

  22. Koornneef M, Hanhart C, Jongsma M, Toma I, Weide R, Zabel P, Hille J: Breeding of a tomato genotype readily acccessible to genetic manipulation. Plant Sci 45: 201–208 (1986).

    Google Scholar 

  23. Kunkel TA: Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82: 488–492 (1985).

    Google Scholar 

  24. Murray EE, Rocheleau T, Eberle M, Stock C Sekar V. and Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16: 1035–1050 (1991).

    Google Scholar 

  25. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA: Insect resistant cotton plants. Bio/technology. 8: 939–943 (1990).

    Google Scholar 

  26. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).

    Google Scholar 

  27. Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SL, Wyman J, Love S, Reed G, Biever, Fischhoff DA: Genetically improved potatoes: protection from damage by colorado potato beetles. Plant Mol Biol 22: 313–321 (1993).

    Google Scholar 

  28. Reiss B, Sprengler R, Schaller H: Protein fusions with the kanamycin resistance gene from transposon Tn5. EMBO J 3: 3317–3322 (1984).

    Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  30. Simon R, Priefer U, Puhler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram- negative bacteria. Bio/technology 1: 784–791 (1983).

    Google Scholar 

  31. Töpfer R, Matzeit V, Groneborn B, Schell J, Steinbiss H-H: A set of expression vectors for transcriptional and translational fusions. Nucl Acids Res 15: 5890 (1987).

    Google Scholar 

  32. Töpfer R, Pröls M, Schell J, Steinbiss H: Transient gene expression in tobacco protoplasts. II. Comparison of the reporter gene systems for CAT, NPTII and GUS. Plant Cell Rep 7: 225–228 (1988).

    Google Scholar 

  33. Vaeck M, Reynaerts A, Höfte H. Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328: 33–37 (1987).

    Google Scholar 

  34. Van Rie J, McGaughey WH, Johnson DE, Barnett D, Van Mellaert H: Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72–74 (1990).

    Google Scholar 

  35. Van Rie J, Jansen S, Höfte H, Degheele D, Van Mellaert H: Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis Delta-endotoxins. Appl Environm Microbiol 56: 1378–1385 (1990).

    Google Scholar 

  36. Van Wordragen MF, Honée G, Dons HJM: Insect resistant chrysanthemum calluses by introduction of a Bacillus thuringiensis crystal protein gene. Transgenic Research 2: 170–180 (1993).

    Google Scholar 

  37. Visser B, Munsterman E, Stoker A, Dirkse WG: A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J Bact 172: 6783–6788 (1990).

    Google Scholar 

  38. Wabiko H, Raymond K, BullaJr L: Bacillus thuringiensis entomocidal protoxin gene sequence and gene product analysis. DNA 5: 305–314 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Salm, T., Bosch, D., Honée, G. et al. Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cryIC genes: a resistance management strategy. Plant Mol Biol 26, 51–59 (1994). https://doi.org/10.1007/BF00039519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039519

Key words

Navigation