Skip to main content
Log in

Composition and biosynthesis of thylakoid membrane polypeptides in the red alga Cyanidium caldarium: Comparison with the thylakoid polypeptide composition of higher plants and cyanobacteria

  • Regular Papers
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The polypeptide composition of thylakoid membranes of the red alga Cyanidium caldarium was studied by PAGE in the presence of lithium dodecyl sulfate. The thylakoid membranes were shown to contain 65 polypeptides with mol wt from 110 to 10 kDa. PS I isolated from C. caldarium cells is composed of at least 5 components, one of which is the chlorophyll-protein complex with mol wt of 110 kDa typical of higher plants. Cyt f, c 552, b 6 and b 559 were identified. Inhibition of carotenoid biosynthesis with norflurazon caused no changes in the polypeptide composition of thylakoid membranes of the algae grown in dark. The suppression of the biosynthesis rate of some thylakoid polypeptides in the algae grown with norflurazon in light is a result of membrane photodestruction. Thylakoid membranes from C. caldarium cells are more similar in the number of protein components to thylakoid membranes from cells of the cyanobacterium Anacystis nidulans than to those of higher plants (Pisum sativum), which was proved by immune-blotting assays: Thylakoid membranes of the red alga and cyanobacteria contain 28 homologous polypeptides, while thylakoid membranes of the alga and pea, only 15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

CP:

chlorophyll-protein complex

LDS:

lithium dodecyl sulfate

NF:

norflurazon

References

  • Allen MB (1959) Arch Microbiol 32: 270–277

    Google Scholar 

  • Anderson JM and Levine R (1974) Biochim Biophys Acta 357: 118–126

    PubMed  Google Scholar 

  • Bengis C and Nelson N (1977) J. Biol Chem 258: 4564–4569

    Google Scholar 

  • Bullerjahn GS, Riethman HC and Sherman LA (1985) Biochim Biophys Acta 810: 148–157

    PubMed  Google Scholar 

  • Burgess DG and Taylor WC (1987) Planta 170: 520–527

    Article  Google Scholar 

  • Chua NH and Blomberg F (1979) J Biol Chem 254: 215–223

    PubMed  Google Scholar 

  • Dyer TA (1984) In: Baker NR and Barber J (eds) Chloroplast Biogenesis, pp 23–69. Amsterdam: Elsevier Science Publishers

    Google Scholar 

  • Guikema JA and Sherman LA (1981) Biochim Biophys Acta 637: 189–201

    Google Scholar 

  • Guikema JA and Sherman LA (1982) Biochim Biophys Acta 681: 440–450

    Google Scholar 

  • Hladik J and Sofrova D (1981) Photosynthetica 15: 490–503

    Google Scholar 

  • Hladik J and Sofrova D (1982) Photosynthetica 17: 267–288

    Google Scholar 

  • Karakashev GV, Stadnichuk IN, Yurina NP and Odintsova MS (1987) Biokhimiya 52: 1485–1493

    Google Scholar 

  • Karakashev GV, Yurina NP, Shubin VV and Odintsova MS (1988) Biokhimiya 53: 1569–1577

    Google Scholar 

  • Karapetyan NV, Litvin FF and Krasnovskii AA (1963) Biofizika 8: 191–200

    Google Scholar 

  • Lundell DJ, Glaser AN and Malkin R (1985) In: Steinback KE, Bonits S, Arntzen CJ and Bogorad L (eds) Molecular Biology of Photosynthetic Apparatus, pp 136–141. Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Mayfield SP, Nelson T and Taylor WC (1986) Plant Physiol 82: 760–764

    Google Scholar 

  • Oelmuller R and Mohr H (1986) Planta 167: 106–113

    Google Scholar 

  • Ortis MN, Melis A and Malkin R (1985) In: Steinback KE, Bonits S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 130–135. Cold Spring Harbor: Cold Spring Harbor Laboratory

    Google Scholar 

  • Pakrasi HB, Riethman HC and Sherman LA (1985) Plant Physiol 82: 6903–6908

    Google Scholar 

  • Redlinger T and Gantt E (1983) Plant Physiol 73: 36–40

    Google Scholar 

  • Rogner M, Muhlenhoff U, Boekema EJ and Witt HT (1990) Biochim Biophys Acta 1015: 415–424

    Google Scholar 

  • Schaffner W and Weissmann C (1973) Anal Biochem 56: 502–514

    PubMed  Google Scholar 

  • Towbin H, Staehelin T and Gordon J (1979) Proc Natl Acad Sci USA 76: 4350–4354

    PubMed  Google Scholar 

  • Vaisberg J and Schiff JA (1976) Plant Physiol 57: 260–269

    Google Scholar 

  • Vernon LP (1960) Anal Chem 32: 1144–1150

    Google Scholar 

  • Wettern M and Ohad I (1984) Isr J Bot 33: 253–263

    Google Scholar 

  • Wettsteinvon D, Möller BL, Hoyer-Hansen G and Simpson D (1982) In: Schiff JA (ed) Origins of Chloroplasts, pp 243–255. Amsterdam: Elsevier

    Google Scholar 

  • Williams RS and Bennet J (1983) In: Fleischer S and Fleischer B (eds) Methods in Enzymology, pp 487–502 New York: Academic Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurina, N.P., Karakashev, G.V., Karapetyan, N.V. et al. Composition and biosynthesis of thylakoid membrane polypeptides in the red alga Cyanidium caldarium: Comparison with the thylakoid polypeptide composition of higher plants and cyanobacteria. Photosynth Res 30, 15–23 (1991). https://doi.org/10.1007/BF00035678

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035678

Key words

Navigation