Skip to main content
Log in

Spatial autocorrelation and sampling design in plant ecology

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Using spatial analysis methods such as spatial autocorrelation coefficients (Moran's I and Geary's c) and kriging, we compare the capacity of different sampling designs and sample sizes to detect the spatial structure of a sugar-maple (Acer saccharum L.) tree density data set gathered from a secondary growth forest of southwestern Québec. Three different types of subsampling designs (random, systematic and systematic-cluster) with small sample sizes (50 and 64 points), obtained from this larger data set (200 points), are evaluated. The sensitivity of the spatial methods in the detection and the reconstruction of spatial patterns following the application of the various subsampling designs is discussed. We find that the type of sampling design plays an important role in the capacity of autocorrelation coefficients to detect significant spatial autocorrelation, and in the ability to accurately reconstruct spatial patterns by kriging. Sampling designs that contain varying sampling steps, like random and systematic-cluster designs, seem more capable of detecting spatial structures than a systematic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UPGMA =:

Unweighted Pair-Group Method using Arithmetic Averages

References

  • BoehmB.W. 1967. Tabular representation of multivariate functions-with applications to topographic modelling. Report RM-4636-PR, Rand Corporation, Santa Monica, California.

    Google Scholar 

  • BouchardA., BergeronY., CamiréC., GangloffP. & GariépyM. 1985. Proposition d'une méthodologie d'inventaire et de cartographie écologique: le cas de la MRC du Haut-Saint-Laurent. Cah. Géogr. Qué. 29: 79–95.

    Google Scholar 

  • Bouchon, J. 1974. Utilization of regionalized variables in forest inventories. IUFRO and SAF Meeting, June 20–26, Syracuse, New York.

  • BouxinG. & GauthierN. 1982. Pattern analysis in Belgian limestone grasslands. Vegetatio 49: 65–83.

    Google Scholar 

  • BurroughP.A. 1987. Spatial aspects of ecological data. In: JongmanR.H.G., ter BraakC.J.F. & vanTongerenO.F.R. (eds), Data analysis in community and landscape ecology, pp. 213–251. Centre for Agricultural Publishing and Documentation, Wageningen.

    Google Scholar 

  • CliffA.D. & OrdJ.K. 1981. Spatial processes: models and applications. Pion Limited, London.

    Google Scholar 

  • CochranW.G. 1977. Sampling techniques, 3rd ed. John Wiley & Sons, New York.

    Google Scholar 

  • DavidM. 1977. Geostatistical ore reserve estimation. Developments in Geomathematics, 2. Elsevier, Amsterdam.

    Google Scholar 

  • Fortin, M.-J. 1985. Analyse spatiale de la répartition des phénomènes écologiques: méthodes d'analyse spatiale, théorie de l'échantillonnage. Mémoire de Maîtrise ès Sciences, Université de Montréal.

  • GearyR.C. 1954. The contiguity ratio and statistical mapping. Incorpor. Statist. 5: 115–145.

    Google Scholar 

  • GloaguenJ.C. & GauthierN. 1981. Pattern development of the vegetation during colonization of a burnt heathland in Brittany (France). Vegetatio 46: 167–176.

    Google Scholar 

  • GreenR.H. 1979. Sampling design and statistical methods for environmental biologists. John Wiley & Sons, New York.

    Google Scholar 

  • Greig-SmithP. 1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Ann. Bot. 16: 293–316.

    Google Scholar 

  • Greig-SmithP. 1964. Quantitative plant ecology, 2nd ed. Butterworth, London.

    Google Scholar 

  • Greig-SmithP. 1979. Pattern in vegetation. J. Ecol. 67: 755–779.

    Google Scholar 

  • JournelA.G. & HuijbregtsC. 1978. Mining geostatistics. Academic Press, London.

    Google Scholar 

  • JumarsP.A. 1978. Spatial autocorrelation with RUM (Remote Underwater Manipulator): vertical and horizontal structure of a bathyal community. Deep-Sea Research 25: 589–604.

    Google Scholar 

  • LegendreL. & LegendreP. 1984. Écologie numérique. 2ième ed. Tome 2: La structure des données écologiques. Masson, Paris et les Presses de l'Université du Québec.

    Google Scholar 

  • Legendre, P. 1985. The R package for multivariate data analysis. Département de sciences biologiques, Université de Montréal.

  • LegendreP. & FortinM.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Google Scholar 

  • LegendreP. & TroussellierM. 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol. Oceanogr. 33: 1055–1067.

    Google Scholar 

  • Legendre, P., Troussellier, M., Jarry, V. & Fortin, M.-J. 1989. Design for simultaneous sampling of ecological variables: from concepts to numerical solutions. Oikos (in press).

  • Marbeau, J.-P. 1976. Géostatique forestière, état actuel et développements nouveaux, pour l'aménagement en forêt tropicale. Thèse de Doctorat, École Nationale Supérieure des Mines de Paris, Centre de Géostatique et de Morphologie Mathématique, Fontainebleau.

  • MatheronG. 1973. The intrinsic random functions and their applications. Adv. Appl. Prob. 5: 439–468.

    Google Scholar 

  • McBratneyA.B. & WebsterR. 1986. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil Sci. 37: 617–639.

    Google Scholar 

  • McBratneyA.B., WebsterR. & BurgessT.M. 1981. The design of optimal sampling schemes for local estimation and mapping of regionalized variables. I. Theory and methods. Comp. Geosci. 7: 331–334.

    Google Scholar 

  • McCallJr.C.H. 1982. Sampling and statistics handbook for research. Iowa State Univ. Press, Ames, Iowa.

    Google Scholar 

  • MinchinP.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Google Scholar 

  • MohlerC.L. 1981. Effects of sample distribution along gradients on eigenvector ordination. Vegetatio 45: 141–145.

    Google Scholar 

  • MohlerC.L. 1983. Effect of sampling pattern on estimation of species distribution along gradients. Vegetatio 54: 97–102.

    Google Scholar 

  • MoranP.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    Google Scholar 

  • PodaniJ. 1987. Analysis of mapped and simulated vegetation patterns by means of computerized sampling techniques. Acta Bot. Hung. 30: 403–425.

    Google Scholar 

  • PodaniJ. 1987. Computerized sampling in vegetation studies. Coenoses 2: 9–18.

    Google Scholar 

  • OdenN.L. 1984. Assessing the significance of a spatial correlogram. Geogr. Anal. 16: 1–16.

    Google Scholar 

  • OliverM.A. & WebsterR. 1986. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Anal. 18: 227–242.

    Google Scholar 

  • RenshawE. & FordE.D. 1984. The description of spatial pattern using two-dimensional spectral analysis. Vegetatio 56: 75–85.

    Google Scholar 

  • SakaiA.K. & OdenN.L. 1983. Spatial pattern of sex expression in silver maple (Acer saccharinum L.): Morisita's index and spatial autocorrelation. Am. Nat. 122: 489–508.

    Google Scholar 

  • ScherrerB. 1982. Techniques de sondage en écologie. In: FrontierS. (ed.), Stratégies d'échantillonnage en écologie. Collection d'Écologie, 17, pp. 63–162. Masson, Paris et les Presses de l'Université Laval, Québec.

    Google Scholar 

  • ScherrerB. 1984. Biostatistique. Gaëtan Morin Editeur, Chicoutimi, Québec.

    Google Scholar 

  • SokalR.R. 1979. Ecological parameters inferred from spatial correlograms. In: PatilG.P. & RosenzweigM.L. (eds), Contemporary quantitative ecology and related ecometrics. Statistical Ecology Series, Vol. 12, pp. 167–196. Int. Co-operat. Publi. House, Fairland, M.D.

    Google Scholar 

  • SokalR.R. 1986. Spatial data analysis and historical processes. In: DidayE. et al. (eds), Data analysis and informatics, IV. Proceedings of the Fourth International Symposium on Data Analysis and Informatics, pp. 29–43. Versailles, France, 1985. North-Holland, Amsterdam.

    Google Scholar 

  • SokalR.R. & MenozziP. 1982. Spatial autocorrelation of HLA frequencies in Europe support demic diffusion of early farmers. Am. Nat. 119: 1–17.

    Google Scholar 

  • SokalR.R. & OdenN.L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linnean Soc. 10: 199–228.

    Google Scholar 

  • SokalR.R. & ThomsonJ.D. 1987. Applications of spatial autocorrelation in ecology. In: LegendreP. & LegendreL. (eds), Developments in numerical ecology. NATO ASI Series, Vol. G 14, pp. 431–466. Springer-Verlag, Berlin.

    Google Scholar 

  • UptonG.J.G. & FingletonB. 1985. Spatial data analysis by example. Vol. 1: Point pattern and quantitative data. John Wiley & Sons, Chichester.

    Google Scholar 

  • WebsterR. & BurgessT.M. 1984. Sampling and bulking strategies for estimating soil properties in small regions. J. Soil. Sci. 35: 127–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortin, MJ., Drapeau, P. & Legendre, P. Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83, 209–222 (1989). https://doi.org/10.1007/BF00031693

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031693

Keywords

Navigation