Skip to main content
Log in

Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw.

Hydrobiologia Aims and scope Submit manuscript

Abstract

An account is given of methods developed to monitor heavy metals in rivers by measuring the concentration of these metals in Fontinalis antipyretica Hedw. Key features of the standard method recommended include the harvesting of materials from microhabitats with fast current speeds wherever possible, thorough washing in field and laboratory, use of terminal 2-cm lengths of shoot, drying at 105°C and digestion in 2 M HNO3. In order to establish the extent to which this species is useful and to provide baseline data with which others can compare their own observations, samples of moss, water and sediments were harvested for analysis from 52 different sites in northern England and Belgium. Significant positive correlations were obtained between Cu and Zn in 2-cm tips and in both (total) water and sediment, but in the case of Cd and Pb only between 2-cm tips and sediment. Multiple stepwise regression was used to quantify the apparent influence of environmental variables. For instance, with Pb in the moss as the dependent variable, significant influences were found for Zn in the moss (+ve) aqueous Mn (+ve) and filtrable reactive phosphate (−ve). Variables which were significant were incorporated in each case into equations to predict the concentration of metal that would be expected if allowance was made for the concentrations of all these variables at each site. In the case of Pb, r2 = 0.075 for metal in moss versus aqueous metal, whereas r2 = 0.879 for metal in moss versus the predicted value for metal in moss. This suggests that the lack of correlation between Pb in moss and Pb in water was probably due largely to the influence of other variables. For Cd, the difference was less: r2 = 0.013 and r2 = 0.47, respectively. A principal components analysis was also carried out, with measurements of water and moss as the variables ordinated. An example is given of the use of the moss to monitor intermittent Zn pollution in R. Wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almestrand, A., Almestrand, A. & Bergren, H., 1983. Rönneå. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Brown, D. H. & Buck, G. W., 1979. Desiccation effects and cation distribution in bryophytes. New Phytol. 82: 115–125.

    Google Scholar 

  • Burton, M. A. S. & Peterson, P. J., 1979. Metal accumulation by aquatic bryophytes from polluted mine streams. Envir. Pollut. 19: 39–46.

    Google Scholar 

  • Butcher, R. W., 1933. Studies on the ecology of rivers. I. On the the River Itchen. J. Ecol. 15: 55–65.

    Google Scholar 

  • Butcher, R. W., 1933. Studies on the ecology of rivers. 1. On the distribution of macrophytic vegetation in the rivers in Britain. J. Ecol. 21: 58–91.

    Google Scholar 

  • Crum, H. A. & Anderson, L. E., 1981. Mosses of Eastern North America, 2. Columbia University Press, N.Y.: 665–1328.

    Google Scholar 

  • Descy, J.-P. & Empain, A., 1983. Meuse. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Dietz, F., 1973. The enrichment of heavy metals in submerged plants. In: Jenkins, S. H. (ed.). Advances in Water Pollution Research. 6th Int. Conf., Jerusalem, 1972. Pergamon Press, Oxford; N.Y.: 53–60.

    Google Scholar 

  • Edwards, R. W., Benson-Evans, K., Learner, M. A., Williams, P. & Williams, R., 1972. A biological survey of the R. Taff. Wat. Pollut. Cont. 71: 144–166.

    Google Scholar 

  • Empain, A., 1973. La végétation bryophytique aquatique et subaquatique de la Sambre belge, son déterminisme écologique et ses relations avec la pollution des eaux. Lejeunia, N. Ser. 69: 1–58.

    Google Scholar 

  • Empain, A., 1976. Les bryophytes aquatiques utilisés comme traceurs de la contamination en métaux lourds des eaux douces. Mém. Soc. r. Bot. Belg. 7: 141–156.

    Google Scholar 

  • Empain, A., 1977. Ecologie des Populations Bryophytiques Aquatiques de la Meuse, de la Sambre et de la Somme. Mém. Doct. Sci. Bot., Univ. Liège, Belg., 179 pp.

    Google Scholar 

  • Empain, A., 1978. Relations quantitatives entre les populations de bryophytes aquatiques et la pollution des eaux courantes. Définition d'un indice de qualité des eaux. Hydrobiologia 60: 49–74.

    Google Scholar 

  • Empain, A., Lambinon, J., Mouvet, C. & Kirchmann, R., 1980. Utilisation des bryophytes aquatiques et subaquatiques comme indicateurs biologiques de la qualité des eaux courantes. In: Pesson, P. (ed.). La Pollution des Eaux Continentales, 2nd ed. Gauthier-Villars, Paris: 195–223.

    Google Scholar 

  • Fox, D. J. & Guire, K. E., 1976. Documentation for MIDAS, 3rd ed. Statist. Res. Lab., Univ. Mich., Ann Arbor, 203 pp.

    Google Scholar 

  • Frost, W. E., 1942. R. Liffey survey. 4. The fauna of submerged ‘mosses’ in an acid and an alkaline water. Proc. r. Acad. Ireland B 13: 293–369.

    Google Scholar 

  • Glime, J. M., 1968. Ecological observations on some bryophytes in Appalachian mountain streams. Castanea 33: 300–325.

    Google Scholar 

  • Grube, H. J., 1975. Die Makrophytenvegetation der Fliessgewässer in Süd-Niedersachsen und ihre Beziehungen zur Gewässerverschmutzung. Arch. Hydrobiol. Suppl. 45: 376–456.

    Google Scholar 

  • Harding, J. P. C., 1981. Macrophytes as Monitors of River Water Quality in the Southern N.W.W.A. Area. Ref. No. TS-BS-81-2 Northwest Water Authority, Warrington, Engl., 54 pp.

  • Harding, J. P. C. & Whitton, B. A., 1981. Accumulation of zinc, cadmium and lead by field populations of Lemanea. Wat. Res. 15: 301–319.

    Google Scholar 

  • Heise, P., 1983. Gudenå. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Heuff, H. & Horkan, K., 1983. Caragh. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Holmes, N. T. H., Lloyd, E. J. H., Potts, M. & Whitton, B. A., 1972. Plants of the River Tyne and future water transfer scheme. Vasculum 57: 56–78.

    Google Scholar 

  • Holmes, N. T. H. & Whitton, B. A., 1975. Macrophytes of the River Tweed. Trans. bot. Soc. Edinb. 42: 369–381.

    Google Scholar 

  • Holmes, N. T. H. & Whitton, B. A., 1977a. The macrophytic vegetation of the River Tees in 1975: observed and predicted changes. Freshwat. Biol. 7: 43–60.

    Google Scholar 

  • Holmes, N. T. H. & Whitton, B. A., 1977b. Macrophytic vegetation of the River Swale, Yorkshire. Freshwat. Biol. 7: 545–558.

    Google Scholar 

  • Institute for Social Research, 1980. OSIRIS IV User's Manual, 6th ed. 254 pp. Inst. Social Res., Unvi. Mich., Ann Arbor, 254 pp.

    Google Scholar 

  • Kohler, A., Vollrath, H. & Beisl, E., 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefass-Makrophyten und Fliessgewässersystem Moosach (Müncher Ebene). Arch. Hydrobiol. 69: 333–365.

    Google Scholar 

  • McLean, R. O. & Jones, A. K., 1975. Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshwat. Biol. 5: 431–444.

    Google Scholar 

  • Mead, R., 1971. A note on the use and the misuse of regression models in ecology. J. Ecol. 59: 215–219.

    Google Scholar 

  • Mouvet, C., 1980. Pollution de l'Amblève par les métaux lourds, en particulier le chrome: dosages dans les eaux er les bryophytes aquatiques. Bull. cent. bel. Étud. Docum. Eaux 445, 33: 527–538.

    Google Scholar 

  • Muhle, H., Scherrer, M. & Winkler, S., 1979. Wassermoose in der Nebenflussen der Donau um Ulm. Mitt. Ver. Naturwiss. Math. Ulm 30: 115–129.

    Google Scholar 

  • Pickering, D. C. & Puia, I. L., 1969. Mechanism for the uptake of zinc by Fontinalis antipyretica. Physiol. pl. 22: 653–661.

    Google Scholar 

  • Richards, P. W., 1947. The introduction of Fontinalis antipyretica Hedw. into South Africa and its biological effects. Trans. br. bryol. Soc. 1: 16.

    Google Scholar 

  • Say, P. J., Diaz, B. M. & Whitton, B. A., 1977. Influence of zinc on lotic plants. 1. Tolerance of Hormidium species to zinc. Freshwat. Biol. 7: 257–376.

    Google Scholar 

  • Say, P. J., Harding, J. P. C. & Whitton, B. A., 1981. Aquatic mosses as monitors of heavy metal contamination in the River Etherow, England. Envir. Pollut. Ser. B 2: 295–307.

    Google Scholar 

  • Sirjola, E., 1969. Aquatic vegetation of the River Teuronjoki, South Finland and its relation to water velocity. Ann. bot. fenn. 6: 68–75.

    Google Scholar 

  • Skulberg, O. M. & Lillehammer, A., 1983. Glåma. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Smith, A. J. E., 1978. The Moss Flora of Britain and Ireland. Cambridge University Press, Cambridge, 706 pp.

    Google Scholar 

  • Sommer, C. S. & Winkler, S., 1982. Reaktionen im Gaswechsel von Fontinalis antipyretica HEDW. nach experimentellen Belastungen mit Schwermetallverbindungen. Arch. Hydrobiol. 93: 503–524.

    Google Scholar 

  • Stern, M. S. & Stern, D. H., 1968. A limnological study of a Tennessee cold springbook. Am. Midl. Nat. 82: 62–82.

    Google Scholar 

  • Watson, E. V., 1968. British Mosses and Liverworts. 2nd ed. Cambridge University Press, Cambridge; 495 pp.

    Google Scholar 

  • Weber-Oldecop, D. W., 1970. Water plant communities in eastern Lower Saxony (1). Int. Revue ges. Hydrobiol. 55: 913–967.

    Google Scholar 

  • Wehr, J. D., Empain, A., Mouvet, C., Say, P. J. & Whitton B. A., in press. Methods for processing aquatic mosses used as monitors for heavy metals. Wat. Res.

  • Wehr, J. D. & Whitton, B. A., in press a. Accumulation of heavy metals by aquatic mosses. 2. Rhynchostegium riparioides.

  • Wehr, J. D. & Whitton, B. A., in press b. Accumulation of heavy metals by aquatic mosses. 3. Seasonal effects.

  • Welch, W. A., 1960. A Monograph of the Fontinalaceae. M. Nijhoff, The Hague, Neth.

    Google Scholar 

  • Welsh, R. P. H. & Denny, P., 1980. The uptake of lead and copper by submerged aquatic macrophytes in two English lakes. J. Ecol. 68: 443–455.

    Google Scholar 

  • Whitton, R. P. H., Say, P. J. & Wehr, J. D., 1981. Use of plants to monitor heavy metals in rivers. In: Say, P. J. & Whitton, B. A. (eds). Heavy Metals in Northern England: Environmental and Biological Aspects. Dep. Bot., Univ. Durham, Engl.: pp. 135–145.

    Google Scholar 

  • Whitton, B. A., Say, P. J. & Jupp, B. P., 1982. Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Envir. Pollut. Ser. B 3: 299–316.

    Google Scholar 

  • Williams, R. S., 1930. Some deep-water mosses. Bryologist 33: 32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Say, P.J., Whitton, B.A. Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw.. Hydrobiologia 100, 245–260 (1983). https://doi.org/10.1007/BF00027432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027432

Keywords

Navigation