Skip to main content
Log in

Epilithic diatom community response to years of P04 fertilization: Kuparuk River, Alaska (68 N Lat.)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

An arctic river was fertilized continuously through the ice-free season with phosphoric acid beginning in 1983. The epilithic diatom community increased in biomass in the first two years in response to the added limiting nutrient (Peterson et al., 1983). The diatom community switched from one dominated by Hannea arcus to one dominated by species of Achnanthes and Cymbella. The immediate responses to the P-addition were decreases in both the Shannon diversity and evenness indices. By the second year, the community diversity increased downriver reaching maximal species richness (110–127 spp). In 1985–1987, the epilithic algal biomass decreased an order of magnitude with both whole-river PO4 (1985, 1987) and PO4 + NH4 addition (1986). In the 5th summer of fertilization, the reduction in biomass was clearly caused by a numerical increase of grazing, refugia-building chironomids (Orthocladiinae, primarily) (Gibeau, 1991; Gibeau, Miller, Hershey, in prep.). We assume the algal biomass reduction in the 3rd and 4th years was similarly caused by grazers with a two year time lag in the numerical response of these monovoltine species. The evenness of the community increased in 1986 as if it might have been grazed; however the number of immigrants was reduced. The community became dominated by Eunotia, Cymbella and Achnanthes, species either fast growing or more prostrate, as the erect species of Hannea Diatoma, and Fragillaria declined. A detrended correspondence analysis of the temporal and spatial diatom samples in species space (186 spp.) showed that the largest variation in the community was between years and less variation was associated with river fertilization.

Samples from bioassay tubes run by Peterson et al. (1983) in the Kuparuk River showed P and N + P limitation as found in the river in 1983–84. Like the river samples, the largest change in the diatom community occurred between 15 and 25 day samples, more than that induced by fertilization. Diatoms sampled from all treatments taken at day 25 were more similar to one another than those sampled at day 15. Diatoms colonizing glass slides used in the bioassay tubes were dominated by Achnanthes linearis and Cymbella minuta. Of the 84 species found in bioassays, 26 species were present in all river samples for 4 years. Differences in the communities discriminated by multivariate methods were cause by changes in rare species and abundance patterns of common species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cattaneo, A., 1983. Grazing on epiphytes. Limmol. Oceanogr. 28: 124–132.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.

    PubMed  Google Scholar 

  • Edmondson, W. T., 1959. Freshwater Biology 2nd ed. John Wiley & Sons, N.Y. 1248 p.

    Google Scholar 

  • Fisher, S. G., 1987. Succession in streams. In Barnes, J. R. & G. W. Minshall (eds). Stream Ecology. Plenum Press. N.Y.: 7–27.

    Google Scholar 

  • Gaugh, H. G., Jr., 1982. Multivariate analysis in community ecology. Cambridge U. Press. Cambridge, U.K.

    Google Scholar 

  • Gibeau, G. G. Jr. & M. C. Miller, 1989. A micro-bioassay for epilithon using nutrient-diffusing artificial substrata. Freshwat. Biol. 5: 172–176.

    Google Scholar 

  • Hershey, A. E., A. L. Hiltner, M. A. J. Hullar, M. C. Miller, R. J. Vestal, M. A. Lock, S. Rundle & B. J. Peterson, 1988. Nutrient influence on a stream grazer: Orthocladius microcommunitites respond to nutrient input. Ecology 69: 1383–1392.

    Article  Google Scholar 

  • Hill, M. O., 1979. Decorana. Ecology and Systematics Program, Cornell University, Ithaca, N.Y. 52 p.

    Google Scholar 

  • Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae) Am. J. Bot. 69: 188–213.

    Article  Google Scholar 

  • Hoagland, K. D., A. Zlotsky & C. G. Peterson, 1986. The source of algal colonizers on rock substrates in a freshwater impoundment. In L. V. Evans & K. D. Hoagland (eds), Algal Biofouling. Elsevier Science Publishers. Amsterdam: 21–39.

    Google Scholar 

  • Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Can. J. Fish. aquat. Sci. 38: 449–457.

    Article  Google Scholar 

  • Hullar, M. A. & J. R. Vestal, 1989. The effects of nutrient limitation and stream discharge on the epilithic microbial community in an oligotrophic arctic stream. Hydrobiologia 172: 19–26.

    Article  CAS  Google Scholar 

  • Hunter, R. D., 1980. Effects of grazing on the quantity and quality of freshwater aufwuchs. Hydrobiologia 69: 251–259.

    Article  Google Scholar 

  • Hynes, H. B. N., 1960. The biology of polluted waters. Liverpool Univ. Press, U.K.

    Google Scholar 

  • Hynes, H. B. N., 1970. The ecology of running waters. Univ. Toronto Press, Canada 555 p.

    Google Scholar 

  • Kaufman, L. H., 1982. Stream aufwuchs accumulation: disturbance frequency and stress resistance and resilience. Oecologia 52: 57–63.

    Article  Google Scholar 

  • Kehde, P. M. & J. L. Wilhm, 1972. The effects of grazing by snails on community structure of periphyton in laboratory streams. Am. Midl. Nat. 87: 8–24.

    Article  Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Stream periphyton and insect herbivores: an experimental study of grazing by a caddishfly population. Ecology 64: 1124–1135.

    Article  Google Scholar 

  • Leland, H. V. & J. L. Carter, 1986. Use of detrended correspondence analysis in evaluating factors controlling species composition of periphyton. pp. 101–117. In Isom, B. G. (ed.) Rationale for sampling and interpretation of ecological data in the assessment of freshwater ecosystems. ASTM STP 894. Am. Sec. Testing and Materials. Philadelphia.

    Google Scholar 

  • Lock, M. A., T. E. Ford, D. M. Fiebig, M. C. Miller, M. Hullar, M. Kaufman, J. R. Vestal, B. J. Peterson & J. E. Hobbie, 1989. A biogeochemical survey of rivers and streams in the mountains and foot-hills province of arctic Alaska. Arch. Hydrobiol. 115: 499–521.

    CAS  Google Scholar 

  • Lowe, R. L., S. W. Golladay & J. R. Webster, 1986. Periphyton response to nutrient manipulation in streams draining clearcut and forested watersheds. J. N. Am. Benthol. Soc. 5: 221–229.

    Article  Google Scholar 

  • Lubchenco, J., 1978. Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Nat. 112: 23–39.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1989. Effects of sanil grazing on benthic algal community structure in different nutrient environments. J. N. Am. Benthol. Soc. 8: 162–172.

    Article  Google Scholar 

  • McNaughton, S. J. & L. L. Wolf, 1973. General Ecology. Holt Reinhart & Winston, Inc. N.Y. 710 p.

    Google Scholar 

  • Mulholland, P. J., J. D. Newbold, J. W. Elwood & C. L. Hom, 1983. The effect of grazing intensity on phosphorus spiralling in autotrophic streams. Oecologia 58: 358–366.

    Article  Google Scholar 

  • Patrick, R., 1970. Benthic stream communities. Am. Scientist 58:546–549.

    Google Scholar 

  • Patrick, R., 1977. Ecology of freshwater diatoms and diatom communities. In D. Werner (ed.) Biology of Diatoms. Univ. California Press, Berkeley: 284–332.

    Google Scholar 

  • Patrick, R., J. Cairns Jr. & A. Scheier, 1968. The relative sensitivity of diatoms, snails and fish to twenty common constituents of industrial wastes. Prog. Fish Culturist 30: 137–140.

    Google Scholar 

  • Peterson, B. J., J. E. Hobbie, T. L. Corliss & D. Kriet, 1983. A continuos flow periphyton bioassay; Tests of nutrient limitation in a tundra stream. Limnol. Oceanogr. 28: 582–595.

    Article  Google Scholar 

  • Peterson, B. J., J. E. Hobbie, A. E. Hershey, M. A. Lock, T. E. Ford, J. R. Vestal, V. L. McKinley, M. A. J. Hullar, M. C. Miller, R. M. Ventullo & G. S. Volk, 1985. Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229: 1383–1386.

    CAS  PubMed  Google Scholar 

  • Peterson, B. J., J. E. Hobbie & T. L. Corliss, 1986. Carbon flow in a tundra stream ecosystem. Can. J. Fish. aquat. Sci. 43: 1259–1270.

    Article  Google Scholar 

  • Poff, N. L., N. J. Voelz & J. V. Ward, 1990. Algal colonization under four experimentally-controlled current regimes in a high mountain stream. J. N. Am. Benthol. Soc. 9: 303–318.

    Article  Google Scholar 

  • Poole, R., 1974. An introduction to quantitative ecology. McGraw-Hill. N.Y. 532 p.

    Google Scholar 

  • Pringle, C. M., 1990. Nutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algae. Ecology 71: 905–920.

    Article  Google Scholar 

  • Rosowski, J. R., K. D. Hoagland & J. E. Aloi, 1986. Structural morphology of diatom-dominated stream biofilm communities under the impact of soil erosion. In Evans, L. V. & K. D. Hoagland (eds), Algal Biofouling. Elsevier. Amsterdam: 247–297.

    Google Scholar 

  • Stevenson, J. R., 1984. How currents on different sides of substrates in steams affect mechanisms of benthic algal accumulation. Int. Revue ges. Hydrobiol. 69: 241–262.

    Google Scholar 

  • Stevenson, J. R., 1990. Benthic algal community dynamics in a stream during and after a spate. J. N. Am. Benthol. Soc. 9: 277–288.

    Article  Google Scholar 

  • Stevenson, J. R. & R. L. Lowe, 1986. Sampling and interpretation of algal patterns for water quality assessments. In B. G. Isom (ed.) ASTM ST 89. Am. Soc. Test. & Materials, Philadelphia: 118–149.

    Google Scholar 

  • Tilman, D., 1982. Resource competition and community composition. Monographs in Population Ecolog 17. Princeton U. Press. N. J. 296 p.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Revue Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, Limnological analyses. W. B. Saunders & Co., Ltd. N.Y.

  • Whitton, B. A. (ed.), 1975. River Ecology. Univ. California Press, Berkeley. 725 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M.C., De Oliveira, P. & Gibeau, G.G. Epilithic diatom community response to years of P04 fertilization: Kuparuk River, Alaska (68 N Lat.). Hydrobiologia 240, 103–119 (1992). https://doi.org/10.1007/BF00013456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013456

Key words

Navigation