Skip to main content
Log in

Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The life histories of Myriophyllum spicatum L., Elodea canadensis Michx., and Potamogeton crispus L., serious aquatic nuisances in many regions of the world, are reviewed to provide insights into the life style of successful aquatic nuisance plants. Specifically, their distribution and spread in North America; their life cycle, productive and reproductive potential; and their ecosystem relationships are reviewed. Hopefully this review will improve a manager's ability to deal with aquatic nuisance problems. It also provides suggestions for basic research needed to develop more effective management practices.

It was found that all three species possess a number of adaptations, including an ability to rapidly propagate vegetatively, an opportunistic nature for obtaining nutrients, a life cycle that favors cool weather, and a number of mechanisms which enhance photosynthetic efficiency, which allow them to proliferate.

These three species do provide benefits to the ecosystem through their roles in materials cycling and energy flow. Therefore, management of these species should take an integrated approach which recognizes these benefits.

The life history information available about the three species varies tremendously; however, a better understanding of resource gain and allocation is needed to manage all three species. Specifically, more research is needed to provide a better understanding of: 1) the role bicarbonate plays in photosynthesis, 2) the role roots play in supplying CO2 to the plabts, 3) resource accumulation and allocation under different temperature and light regimes, 4) resource allocation on a seasonal basis, and 5) nutrient cycling under different management regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, M.S., J. Titus & M. D. McCracken, 1974. Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnol. Oceanogr. 19: 377–389.

    Google Scholar 

  • Adams, M. S., P. Guilizzoni & S. Adams, 1978. Relationship of dissolved inorganic carbon to macrophyte photosynthesis in some Italian lakes. Limnol. Oceanogr. 23: 912–919.

    Google Scholar 

  • Aiken, S. G., P. Newroth & I. Wile, 1979. The biology of Canadian weeds (34). Myriophyllum spicatum L. Can. J. Pl. Sci. 59: 201–215.

    Google Scholar 

  • Allen, E. D. & D. H. N. Spence, 1981. The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh water. New Phytol. 87: 269–284.

    Google Scholar 

  • Allenby, K. G., 1981. Some analyses of aquatic plants and their waters. Hydrobiologia 87: 177–190.

    Google Scholar 

  • Amundsen, C. C. & A. L. Brenkert, 1978. Characterization of the growth of Myriophyllum spicatum and its influence in the aquatic ecosystem of the Tennessee Valley. Univ. Tenn. Wat. Resour. Res. Cent. Res. Rep. 67, Knoxville, 242 pp.

  • Andrews, J. H., 1980. Plant pathogens as agents for biological and integrated control of aquatic plants. Univ. Wisc. Wat. Res. Cent. tech. Completion Rep. 80–01, Madison, 36 pp.

  • Andrews, J. H. & E. P. Hecht, 1981. Evidence for pathogenicity of Fusarium sporotrichioides to eurasian watermilfoil, Myriophyllum spicatum. Can. J. Bot. 59: 1069–1077.

    Google Scholar 

  • Andrews, J. H., E. P. Hecht & S. Bashirian, 1982. Association between the fungus Acremonium curvulum and eurasian watermilfoil, Myriophyllum spicatum. Can. J. Bot. 60: 1216–1221.

    Google Scholar 

  • Angerilli, N. & B. Beirne, 1980. Influences of aquatic plant on colonization of artificial ponds by mosquitoes and their insect predators. Can. Ent. 112: 793–796.

    Google Scholar 

  • Barko, J. W., 1983. The growth of Myriophyllum spicatum L. in relation to selected characteristics of sediment and solution. Aquat. Bot. 15: 91–103.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submergent freshwater macrophytes. Freshwat. Biol. 10: 229–239.

    Google Scholar 

  • Barko, J. W. & R. M. Smart, 1981. Sediment-based nutrition of submersed macrophytes. Aquat. Bot. 10: 339–352.

    Google Scholar 

  • Bayley, S. E., 1970. Ecology and disease of Myriophyllum spicatum L. Ph.D. Thesis, John Hopkins Univ., Baltimore, 192 pp.

    Google Scholar 

  • Bayley, S., H. Rabin & C. Southwick, 1968. Recent decline in the distribution and abundance of Eurasian milfoil in Chesapeake Bay. Chesapeake Sci. 9: 173–181.

    Google Scholar 

  • Bayley, S., V. D. Stotts, P. F. Springer & J. Steenis, 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay 1958–1975. Estuaries 1: 73–84.

    Google Scholar 

  • Bean, G. A., M. Fusco & W. Klarman, 1973. Studies on the ‘Lake Venice disease’ of Eurasian milfoil in the Chesapeake Bay. Chesapeake Sci. 14: 279–280.

    Google Scholar 

  • Best, M. D. & K. E. Mantai, 1978. Growth of Myriophyllum spicatum: sediment or lake water as a source of nitrogen and phosphorus. Ecology 59: 1075–1080.

    Google Scholar 

  • Bilby, R., 1977. Effects of a spate on the macrophyte vegetation of a stream pool. Hydrobiologia 56: 109–112.

    Google Scholar 

  • Black, M. A., S. C. Maberly & D. H. N. Spence, 1981. Resistances to carbon fixation in four submerged freshwater macrophytes. New Phytol. 89: 557–568.

    Google Scholar 

  • Bole, J. B. & J. R. Allan, 1978. Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Wat. Res. 12: 353–358.

    Google Scholar 

  • Borawa, J., J. H. Kerby, M. T. Huisch & A. W. Mullis, 1979. Currituck Sound fish populations before and after infestation by eurasian watermilfoil. In Proc. ann. Conf. S.E. Ass. Fish Wildl. Ag.: 520–528.

  • Bristow, J. W. & M. Whitcombe, 1971. The role of roots in the nutrition of aquatic vascular plants. Am. J. Bot. 58: 8–13.

    Google Scholar 

  • British Columbia Ministry of Environment, 1981. A summary of biological research on eurasian milfoil in British Columbia, 11 Inf. Bull., aquat. Pl. Mgmt Prog. Victoria, 18 pp.

  • Buscemi, P. A., 1958. Littoral oxygen depletion produced by a cover of Elodea canadensis. Oikos 9: 239–245.

    Google Scholar 

  • Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds, water or sediments. Science 207: 987–989.

    Google Scholar 

  • Carpenter, S. R., 1980. The decline of Myriophyllum spicatum in a eutrophic Wisconsin U.S.A. lake. Can. J. Bot. 58: 527–535.

    Google Scholar 

  • Carpenter, S. R. & M. S. Adams, 1977. The macrophyte tissue nutrient pool of a hardwater eutrophic lake: implications for macrophyte harvesting. Aquat. Bot. 3: 239–255

    Google Scholar 

  • Carpenter, S. R. & M. S. Adams, 1978. Macrophyte control by harvesting and herbicides: implications for phosphorus cycling in Lake Wingra, Wisconsin. J. aquat. Pl. Mgmt 16: 20–23.

    Google Scholar 

  • Carpenter, S. R. & A. Gasith, 1978. Mechanical cutting of submersed macrophytes: immediate effects on littoral water chemistry and metabolism. Wat. Res. 12: 55–57.

    Google Scholar 

  • Casterlin, M. E. & W. W. Reynolds, 1978. Habitat selection by juvenile bluegill sunfish, Lepomis macrochirus. Hydrobiologia 59: 75–80.

    Google Scholar 

  • Cattaneo, A. & J. Kalf, 1979. Primary production of algae growing on natural and artificial aquatic plants: a study of interactions between epiphytes and their substrate. Limnol. Oceanogr. 24: 1031–1037.

    Google Scholar 

  • Chapman, V. J., J. M. A. Brown, C. F. Hill & J. L. Carr, 1974. Biology of excessive weed growth in the hydro-electric lakes of the Waitako River, New Zealand. Hydrobiologia 44: 349–367.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1979. The effects of macrophyte removal on the feeding efficiency and growth of sunfishes: evidence from pond studies. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud., Univ. Wisc., Madison: 251–268.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Google Scholar 

  • Crum, G. H. & R. W. Bachmann, 1973. Submersed aquatic macrophytes of the Iowa great lakes region. Iowa St. J. Res. 48: 147–173.

    Google Scholar 

  • Curtis, J. T., 1959. The vegetation of Wisconsin. University of Wisconsin Press, Madison, 657 pp.

    Google Scholar 

  • Dale, H. M., 1981. Hydrostatic pressure as a controlling factor in the depth distribution of Eurasian watermilfoil, Myriophyllum spicatum L. Hydrobiologia 79: 239–244.

    Google Scholar 

  • Danell, K., 1977. Short-term plant succession following the colonization of a northern Swedish lake by the muskrat Ondatra zibethica. J. appl. Ecol. 14: 933–948.

    Google Scholar 

  • DeGroote, D. & R. A. Kennedy, 1977. Photosynthesis in Elodea canadensis 4 carbon acid synthesis. Pl. Physiol. 59: 1133–1135.

    Google Scholar 

  • DeMarte, J. A. & R. T. Hartman, 1974. Studies on absorption of 32P, 50Fe, and 45Ca by watermilfoil (Myriophyllum exalbescens). Ecology 55: 188–194.

    Google Scholar 

  • Elser, H. J., 1969. Observations on the deline of watermilfoil and other aquatic plants, Maryland 1962–1967. Hyacinth Cont. J. 8: 52–60.

    Google Scholar 

  • Eminson, D. & B. Moss, 1980. The composition and ecology of periphyton communities in freshwater, 1. The influence of host type and external environment on community composition. Br. phycol. J. 15: 429–446.

    Google Scholar 

  • Fassett, N., 1969. A manual of aquatic plants. University of Wisconsin Press, Madison, 405 pp.

    Google Scholar 

  • Fitzgerald, G., 1969. Some factors in the competition or antogonism among bacteria, algae and aquatic weeds. J. Phycol. 5: 351–359.

    Google Scholar 

  • Forest, H. S., 1977. Study of submerged aquatic vascular plants in northern glacial lakes, New York state, U.S.A. Folia geobot. phytotax. 12: 329–341.

    Google Scholar 

  • Forsberg, C., 1964. The vegetation changes in Lake Takern. Svensk Bot. Tidskr. 58: 44–54.

    Google Scholar 

  • Gerloff, G. C., 1975. Nutritional ecology of nuisance aquatic plants. U.S. E.P.A. Res. Rep. EPA-660/3–75–027, Corvallis, 78 pp.

  • Gerloff, G. C. & P. H. Krombholz, 1966. Tissue analysis as a measure of nutrient availability for growth of angiosperm aquatic plants. Limnol. Oceanogr. 11: 529–537.

    Google Scholar 

  • Grace, J. B. & R. G. Wetzel, 1978. The production biology of eurasian watermilfoil: a review. J. aquat. Pl. Mgmt 16: 1–10.

    Google Scholar 

  • Grainger, J., 1947. Nutrition and flowering of water plants. J. Ecol. 35: 49–64.

    Google Scholar 

  • Haag, R. W., 1979. The ecological significance of dormancy in some rooted aquatic plants. J. Ecol. 67: 727–738.

    Google Scholar 

  • Harman, W. N., 1974. Phenology and physiognomy of the hydrophytic community in Otsego Lake, N.Y. Rhodora 76: 497–508.

    Google Scholar 

  • Hasler, A. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 359–364.

    Google Scholar 

  • Hayslip, H. F. & F. W. Zettler, 1973. Past and current research on disease of Eurasian watermilfoil (Myriophyllum spicatum L.) Hyacinth Cont. J. 11: 38–40.

    Google Scholar 

  • Hellquist, C. B., 1972. Range extension of vascular plants in New England. Rhodora 74: 131–141.

    Google Scholar 

  • Hellquist, C. B., 1980. Correlation of alkalinity and the distribution of potamogeton in New England. Rhodora 82: 331–344.

    Google Scholar 

  • Hough, R. A., 1979. Photosynthesis, respiration and organic carbon release in Elodea canadensis. Aquat. Bot. 7: 1–12.

    Google Scholar 

  • Hough, R. A. & R. G. Wetzel, 1979. Photosynthetic pathways of some aquatic plants. Aquat. Bot. 3: 297–313

    Google Scholar 

  • Hutchinson, G. E., 1975. A treatise on limnology, 3. John Wiley & Sons, N.Y., 660 pp.

    Google Scholar 

  • Jeschke, L. & K. Muther, 1978. Plant sociology of the Rheinsberger Lakes. Limnologica 11: 307–353.

    Google Scholar 

  • Jewell, W. J., 1970. Aquatic weed decay: dissolved oxygen utilization and nitrogen and phosphorus regeneration. J. Wat. Pollut. Cont. Fed. 43: 1457–1467.

    Google Scholar 

  • Jones, R. C., A. Gurevitch & M. S. Adams, 1979. Significance of the epiphyte component of the littoral to biomass and phosphorus removal by harvesting. In J. E. Breck, R. T. Prentki & O.L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud. Univ. Wisc., Madison: 51–62.

    Google Scholar 

  • Joyner, B. G. & T. E. Freeman, 1973. Pathogenicity of Rhizoctonia solani to aquatic plants. Phytopathology 63: 681–685.

    Google Scholar 

  • Jupp, B. D. & D. H. W. Spence, 1977. Limitations on macrophytes in a eutrophic lake, Lock Leven, 1. Effects of Phytoplankton. J. Ecol. 65: 175–186.

    Google Scholar 

  • Kadono, Y., 1980. Photosynthetic carbon sources in some Potamogeton species. Bot. Mag., Tokyo 93: 185–194.

    Google Scholar 

  • Kangasniemi, B. J., 1983. Observations on herbivorous insects that feed on Myriophyllum spicatum in British Columbia. In U.S. E.P.A. (ed.), Lake restoration, protection and management. Proc. 2nd ann. Conf. N. am. Lake Mgmt Soc. EPA 440/5–83–001 Wash., D.C.: 214–218.

  • Keast, A., 1984. The introduced aquatic macrophyte, Myriophyllum spicatum, as habitat for fish and their invertebrate prey. Can. J. Zool. G2: 1289–1303.

    Google Scholar 

  • Kimbel, J. C., 1982. Factors influencing potential intralake colonization by Myriophyllum spicatum L. Aquat. Bot. 14: 295–307.

    Google Scholar 

  • Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20: 553–562.

    Google Scholar 

  • Krull, J. N., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. J. Wildl. Mgmt 34: 707–718.

    Google Scholar 

  • Kuflikowski, T., 1974. The phytophilous fauna of the dam reservoir at Goczalkowice, Poland. Acta hydrobiol. 16: 189–207.

    Google Scholar 

  • Kunii, H., 1982. Life cycle and growth of Potamogeton crispus L. in shallow pond Ojage-ike. Bot. Mag., Tokyo 95: 109–124.

    Google Scholar 

  • Landers, D. H., 1979. Nutrient release from senescing milfoil and phytoplankton response. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management and ecosystem consequences of lake harvesting. Inst. envir. Stud. Univ. Wisc., Madison: 127–134.

    Google Scholar 

  • Lind, C. T. & G. Cottam, 1969. The submerged aquatics of University Bay: A study in eutrophication. Am. Midl. Nat. 81: 353–369.

    Google Scholar 

  • Lloyd, N. D. H., D. T. Canvin & J. M. Bristow, 1977. Photosynthesis and photorespiration in submerged aquatic vascular plants. Can. J. Bot. 55: 3001–3005.

    Google Scholar 

  • Loczy, S., R. Carignan & D. Planas, 1983. The role of roots in carbon uptake by the submersed macrophytes Myriophyllum spicatum, Vallisneria americana, and Heteranthera dubia. Hydrobiologia 98: 3–7.

    Google Scholar 

  • Lundegardh-Ericson, C., 1972. Changes during four years in the aquatic macrovegetation in a flad in northern Stockholm Archipelago. Svensk Bot. Tidskr. 66: 207–225.

    Google Scholar 

  • Lunney, C. A., G. J. Davis & M. M. Jones, 1975. Unusual structures associated with peripheral reticulum in chloroplasts of Myriophyllum spicatum L. J. Ultrastruct. Res. 50: 293–296.

    Google Scholar 

  • Maberly, S. C. & D. N. H. Spence, 1983. Photosynthetic inorganic carbon use by freshwater plants. J. Ecol. 71: 705–724.

    Google Scholar 

  • Madsen, J. D., 1982. The aquatic macrophyte communities of two trout streams in Wisconsin. M.Sci. Thesis, Univ. Wisc., Madison, 108 pp.

    Google Scholar 

  • McGaha, Y. J., 1952. The limnological relations of insects to certain aquatic flowering plants. Trans. am. microscop. Soc. 71: 355–381.

    Google Scholar 

  • Menzie, C. A., 1980. The chironomid insecta diptera and other fauna of the Myriophyllum spicatum plant bed in the lower Hudson River, New York, U.S.A. Estuaries 3: 38–54.

    Google Scholar 

  • Misra, R. D., 1938. The distribution of aquatic plants in the English lakes. J. Ecol. 26: 411–452.

    Google Scholar 

  • Moyle, J. B., 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. Am. Midl. Nat. 34: 402–421.

    Google Scholar 

  • Mulligan, H. F., A. Baranowski & R. Johnson, 1976. Nitrogen and phosphorus fertilization of aquatic vascular plants and algae in replicated ponds, 1 Initial response to fertilization. Hydrobiologia 48: 109–116.

    Google Scholar 

  • Nichols, D. S. & D. R. Keeney, 1973. Nitrogen and phosphorus release from decaying water milfoil. Hydrobiologia 45: 509–525.

    Google Scholar 

  • Nichols, D. S. & D. R. Keeney, 1976a. Nitrogen nutrition of Myriophyllum spicatum: Variation of plant tissue nitrogen concentration with season and site in Lake Wingra. Freshwat. Biol. 6: 137–144.

    Google Scholar 

  • Nichols, D. S. & D. R. Keeney, 1976b. Nitrogen nutrition of Myriophyllum spicatum: Uptake and translocation of 15N by shoots and roots. Freshwat. Biol. 6: 145–154.

    Google Scholar 

  • Nichols, S. A., 1971. The distribution and control of macrophyte biomass in Lake Wingra. Technical Report OWRR. B-019-Wis. Univ. Wisc. Wat. Resour. Cent, Madison, 132 pp.

    Google Scholar 

  • Nichols, S. A., 1973. The effects of harvesting aquatic macrophytes on algae. Trans. Wis. Acad. Sci. 61: 165–172.

    Google Scholar 

  • Nichols, S. A., 1982. Sampling characteristics of macrophyte biomass. Wat. Res. Bull. 18: 521–523.

    Google Scholar 

  • Nichols, S. A., 1984. Macrophyte community dynamics in a dredged Wisconsin Lake. Wat. Res. Bull. 20: 573–576.

    Google Scholar 

  • Nichols, S. A. & S. Mori, 1971. The littoral macrophyte vegetation of Lake Wingra. Trans. Wis. Acad. Sci. 59: 107–119.

    Google Scholar 

  • Nichols, S. A. & B. Shaw, 1983. Review of management tactics for integrated aquatic weed management of eurasian water-milfoil (Myriophyllum spicatum), curlyleaf pondweed (Potamogeton crispus) and elodea (Elodea canadensis). U.S. E.P.A. (ed.), Lake Restoration, protection and management. Proc. 2nd ann. Conf. N. am. Lake Mgmt, Soc. EPA 440/5–83–001, Wash., D.C.: 181–192.

  • Oglesby, R. T., A. Vogel, J. H. Peverly & R. Johnson, 1976. Changes in submerged plants at the south end of Cayuga Lake following tropical storm Agnes. Hydrobiologia 48: 251–255.

    Google Scholar 

  • Olsen, S., 1950. Aquatic plants and hydrospheric factors. 1 Aquatic plants in SW Jutland, Denmark. Svensk Bot. Tidskr. 44: 1–32.

    Google Scholar 

  • Patten, B. C., 1956. Notes on the biology of Myriophyllum spicatum L. in a New Jersey lake. Bull. Torrey bot. Club 83: 5–18.

    Google Scholar 

  • Pearsall, W. H., 1920. The aquatic vegetation of English lakes. J. Ecol. 8: 163–199.

    Google Scholar 

  • Penfound, W. H., T. F. Hall & A. D. Hess, 1945. The spring phenology of plants in and around reservoirs in north Alabama with particular reference to malaria control. Ecology 26: 332–352.

    Google Scholar 

  • Peverly, J. H. & J. Brittain, 1978. The effect of milfoil (Myriophyllum spicatum L.) on phosphorus movement between sediment and water. J. Gt Lakes Res. 4: 62–68.

    Google Scholar 

  • Peverly, J. H. & R. L. Johnson, 1979. Nutrient chemistry in herbicide treated ponds of differing fertility. J. envir. Qual. 8: 294–300.

    Google Scholar 

  • Phillips, C. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Google Scholar 

  • Reed, C. F., 1977. History and distribution of Eurasian watermilfoil in United States and Canada. Phytologia 36: 416–436.

    Google Scholar 

  • Rogers, K. H. & C. M. Breen, 1980. Growth and reproduction of Potamogeton crispus in a South African Lake. J. Ecol. 68: 561–571.

    Google Scholar 

  • St. John, H., 1965. Monograph of the genus Elodea (Hydrocharitaceae) 4. The species of eastern and central North America & summary. Rhodora 67: 1–35, 155–180.

    Google Scholar 

  • Saitoh, M., K. Narita & S. Isikawa, 1970. Photosynthetic nature of some aquatic plants in relation to temperature. Bot. Mag., Tokyo 83: 10–12.

    Google Scholar 

  • Salvucci, M. E. & G. Bowes, 1983. Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Pl. Physiol. 73: 488–496.

    Google Scholar 

  • Sastroutomo, S. S., 1980. Environmental control of turion formation in curly pondweed (Potamogeton crispus). Physiol. Pl. 49: 261–264.

    Google Scholar 

  • Sastroutomo, S. S., 1981. Turion formation, dormancy, and germination in curly pondweed, Potamogeton crispus L. Aquat. Bot. 10: 161–173.

    Google Scholar 

  • Sastroutomo, S. S., I. Ikusima, M. Numata & S. Iizumi, 1979. The importance of turions in the propagation of pondweed (Potamogeton crispus L.). Ecol. Rev. 19: 75–88.

    Google Scholar 

  • Scales, P. & A. Bryan, 1979. Studies on aquatic macrophytes part 27. Transport of Myriophyllum spicatum fragments by boaters and assessment of the 1978 boat quarantine program. Br. Columbia Minist. Envir., Wat. Invest. Branch, Victoria, 36 pp.

    Google Scholar 

  • Schmid, W. P., 1965, Distribution of aquatic vegetation as measured by line intercept with SCUBA. Ecology 46: 816–823.

    Google Scholar 

  • Schmitt, M. R., 1977. The dependence of net photosynthesis on internal phosphorus levels in Myriophyllum spicatum L. M.Sci. Thesis, Univ. Wisc., Madison, 57 pp.

    Google Scholar 

  • Schmitt, M. R. & M. S. Adams, 1981. Dependence of rates of apparent photosynthesis on tissue phosphorus concentrations in Myriophyllum spicatum L. Aquat. Bot. 11: 379–387.

    Google Scholar 

  • Schults, D. W. & K. W. Maleug, 1971. Uptake of radiophosphorus by rooted aquatic plants. In Proc. 3rd Nat. Symp. Radioecol. Oak Ridge, Tenn.: 417–424.

  • Sculthorpe, C. D., 1967. The biology of aquatic vascular plants. Edward Arnold Ltd., Lond., 610 pp.

    Google Scholar 

  • Seddon, B., 1972. Aquatic macrophytes as limnological indicators. Freshwat. Biol. 2: 107–130.

    Google Scholar 

  • Sheldon, R. B. & C. W. Boylen, 1977. Maximum depth inhabited by aquatic vascular plants. Am. Midl. Nat. 97: 248–254.

    Google Scholar 

  • Smith, F. A. & N. A. Walker, 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO 3 and to carbon isotopic discrimination. New Phytol. 86: 245–259.

    Google Scholar 

  • Sondergaard, M., 1979. Light and dark respiration and the effect of the lacunal system on refixation of carbon dioxide in submerged aquatic plants. Aquat. Bot. 6: 269–284.

    Google Scholar 

  • Sondergaard, M. & K. Sand-Jensen, 1979. The delay in carbon-14 fixation rates by 3 submerged macrophytes, a source of error in the carbon-14 technique. Aquat. Bot. 6: 111–120.

    Google Scholar 

  • Soszka, G. J., 1975a. Ecological relations between invertebrates and macrophytes in the lake littoral. Ekol. pol. 23: 393–415.

    Google Scholar 

  • Soszka, G. J., 1975b. The invertebrates on submerged macrophytes in three Masurian lakes. Ekol. pol. 23: 371–391.

    Google Scholar 

  • Spence, D. H. N., 1964. The macrophytic vegetation of freshwater lochs, swamps and associated fens. In J. H. Burnett (ed.), The Vegetation of Scotland, Oliver & Boyd, Edinburgh: 406–425.

    Google Scholar 

  • Spence, D. H. N., 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147–170.

    Google Scholar 

  • Springer, P. F., G. F. Beavens & V. D. Stotts, 1961. Eurasian watermilfoil — a rapidly spreading pest plant in eastern waters. Presented at N.E. Wildl. Conf., Halifax, Nova Scotia, June 11–14, 1961.

  • Stanley, R. A., 1970. Studies on nutrition, photosynthesis and respiration in Myriophyllum spicatum L. Ph.D. Thesis, Duke Univ., Durham, N.C., 140 pp.

    Google Scholar 

  • Stanley, R. A., 1976. Response of Eurasian watermilfoil to subfreezing temperature. J. aquat. Pl. Mgmt 14: 36–39.

    Google Scholar 

  • Stanley, R. A. & A. W. Naylor, 1972. Photosynthesis in Eurasian watermilfoil. Pl. Physiol. 50: 149–151.

    Google Scholar 

  • Stanley, R. A. & A. W. Naylor, 1973. Glycolate metabolism in Eurasian watermilfoil (Myriophyllum spicatum). Physiol. Pl. 29: 60–63.

    Google Scholar 

  • Steenis, J. H. & V. D. Stotts, 1961. Progress report on control of Eurasian watermilfoil in Chesapeake Bay. Proc. N.E. Weed Cont. Conf. 15: 566–570.

    Google Scholar 

  • Stuckey, R. L., 1979. Distribution history of Potamogeton crispus (curly pondweed) in North America. Bartonia 46: 22–42.

    Google Scholar 

  • Stuckey, R. L., J. R. Wehrmeister & R. J. Bartolotta, 1978. Submersed aquatic vascular plants in ice-covered ponds of central Ohio. Rhodora 80: 575–580.

    Google Scholar 

  • Tamisier, A., 1971. The diet of teal ducks Anas crecca in the Camargue Region, Alauda 39: 261–311.

    Google Scholar 

  • Titus, J. E., 1977. The comparative physiological ecology of three submerged macrophytes. Ph.D. Thesis, Univ. Wisc., Madison, 195 pp.

    Google Scholar 

  • Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum, and Vallisneria americana. Oecologia 40: 273–286.

    Google Scholar 

  • Trudeau, P. N., 1982. Nuisance aquatic plants and aquatic plant management programs in the United States, 3. Northeastern and north central region. MITRE Corporation, McClean, Virg., 157 pp.

    Google Scholar 

  • Van, T. K., W. R. Haller & G. Bowes, 1976. Photosynthesis of three submerged aquatic macrophytes. Pl. Physiol. 57: 761–768.

    Google Scholar 

  • Waisel, Y. & Z. Shapira, 1971. Functions performed by roots of some submerged hydrophytes. Isr. J. Bot. 20: 69–77.

    Google Scholar 

  • Wehrmeister, J. R., 1978. An ecological life history of the pond-weed Potamogeton crispus L. in North America. Ohio St. Univ., Cent. Lake Erie Area Res. Tech. Rep. 99: Columbus, 157 pp.

  • Welsh, R. P. H. & P. Denny, 1979. The translocation of phosphorus-32 in 2 submerged aquatic angiosperm species. New Phytol. 82: 645–656.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders & Co., Philad., 743 pp.

    Google Scholar 

  • Wile, I., G. Hitchin & G. Beggs, 1979. Impact of mechanical harvesting on Chemung Lake. In J. E. Breck, R. T. Prentki & O. L. Loucks (eds), Aquatic plants, lake management, and ecosystem consequences of lake harvesting. Inst. envir. Stud., Univ. Wisc., Madison: 145–159.

    Google Scholar 

  • Wilson, L. R., 1937. A quantitative and ecological study of the larger plants of Sweeney Lake, Oneida County, Wisconsin, Bull. Torrey Bot. Club 64: 199–208.

    Google Scholar 

  • Wilson, L. R., 1941. The larger vegetation of Trout Lake, Vilas County, Wis. Trans. Wis. Acad. Sci. 33: 135–146.

    Google Scholar 

  • Yeo, R. R., 1966. Yield of propagules of certain aquatic plants. Weeds 14: 110–113.

    Google Scholar 

  • Zettler, F. W. & T. E. Freeman, 1972. Plant pathogens as biocontrols of aquatic weeds. Ann. Rev. Phytopath. 10: 455–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, S.A., Shaw, B.H. Ecological life histories of the three aquatic nuisance plants, Myriophyllum spicatum, Potamogeton crispus and Elodea canadensis . Hydrobiologia 131, 3–21 (1986). https://doi.org/10.1007/BF00008319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00008319

Keywords

Navigation