, Volume 182, Issue 2, pp 99-114

Seasonality in river phytoplankton: multivariate analyses of data from the Ohio River and six Kentucky tributaries

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Two years of physical/chemical and algal abundance data obtained from national Stream-Quality Accounting Network records of 10 river sites in Kentucky USA (4 Ohio River sites and 6 Ohio River tributaries) were analyzed to determine how seasonal changes in river phytoplankton related to changes in physical and chemical parameters. Phytoplankton assemblages differed among rivers as a function of drainage basin characteristics, but exhibited common seasonal changes related to temporal variation in the physical/chemical environment. Distinct shifts in algal dominance were identified between spring (March, April), late summer (July, August, September), and transitional (May, June, November) periods in the 10 systems. Nine common algal genera were found to differ in their response to changes in physical or chemical parameters. Abundances of Anacystis, Oscillatoria, Scenedesmus, and Melosira were strongly positively correlated with temperature while Chlamydomonas and Navicula abundances were inversely related to temperature. Other physical/chemical factors that were significantly positively ( + ) or negatively ( - ) correlated with algal abundances included discharge and alkalinity (Oscillatoria, +), pH CChlamydomonas and Cyclotella, (both + ), turbidity (Anacystis, \s- ; Navicula + ), silica (Cyclotella, - ), and ammonium/organic N (Anacystis, -). Genera within the same algal division exhibited different seasonal patterns and responded to different physical/chemical parameters.