Skip to main content
Log in

Function of the type 11 microtrich sensilla on the lotic amphipod, Gammarus pseudolimnaeus Bousfield

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The type II microtrich sensilla on the lotic amphipod Gammarus pseudolimnaeus Bousfield enable it to control body orientation while swimming, as animals with their sensilla masked spent significantly more time swimming on their sides. These sensilla appear to be involved in the behavioural process that allows the animal to orient into the current (positive rheotaxis), as significantly fewer masked animals were able to turn into novel current flows compared with controls. The sensilla do not appear to play a role in detecting gravity. Results suggest that the sensilla transmit hydromechanical sensory information to the animal, and it is thought that the individual sensilla act in unison as a kinetic sensory organ. The sensilla are well adapted for such a hydromechanical role, as they would likely only be stimulated by currents hitting them broadside on. The sensilla are grouped, with each sensillum facing in a different direction, and the groups are located at appropriate positions for detecting current flows. The sensilla do not play a role in the detection of vibrations. Nor do they play a chemosensory role in the detection of food or predators; however, a role in conspecific chemodetection cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abacus Concepts, Inc., 1986. Interactive Statistics and Graphics Package, Version 1.1.

  • Ache, B. W., 1982. Chemoreception and Thermoreception. In D. N. Bliss, H. L. Atwood & D. C. Sandeman (eds), Biology of Crustacea. Academic Press, New York: 3. 369–398.

    Google Scholar 

  • Adler, H. E., 1970. Ontogeny and Phylogeny of orientation. In L. R. Aronson, E. Tobach, D. S. Lehrman & J. S. Rosenblatt (eds), Essays in memory of T. C. Schneirla. W. H. Freeman, San Francisco: 303–336.

    Google Scholar 

  • Adler, H. E., 1971. Orientation in animals and man. In Orientation, Sensory Basis. Ann. N.Y. Acad. Sci. 188: 3–4.

    Google Scholar 

  • Altner, H., 1977. Insect sensillum specificity and structure: an approach to a new typology. In J. LeMagnen & P. MacLeod (eds), Proceedings of the Sixth International Symposium on Olfaction and Taste. Informatio Retrieval, Ltd., London: 295–303.

    Google Scholar 

  • Altner, H. & L. Prillinger, 1980. Ultrastructure of invertebrate chemo-, thermo-, and thigmoreceptors and its functional significance. Int. Revue Cytol. 67: 69–139.

    Google Scholar 

  • Barnes, R. D., 1987. Invertebrate Zoology, 5th edn. Saunders College Publishing, Philadelphia.

    Google Scholar 

  • Barth, R. G., 1981. Strain detection in the arthropod exoskeleton. In M. S. Laverack & D. J. Cosens (eds), Sense Organs. Blackie, Glasgow, London: 112–141.

    Google Scholar 

  • Bauer, R. T., 1979. Sex attraction and recognition in the Caridean shrimp Heptacarpus paludicola Holmes (Decapoda: Hippolytidae). Mar. Behav. Physiol. 6: 157–174.

    Google Scholar 

  • Bullock, T. H. & G. A. Horridge, 1965. Structure and function in the nervous system of invertebrates. Volumes 1 and 2. Freeman and Col, San Francisco.

    Google Scholar 

  • Bush, B. M. H. & M. S. Laverack, 1982. Mechanoreception In D. N. Bliss, H. L. Atwood & & D. C. Sandeman (eds), Biology of Crustacea. Academic Press, New York 3. 369–398.

    Google Scholar 

  • Caldwell, R. L., 1979. Cavity occupation and defensive behaviour in the Stomatopod Gonodactylus Festai: evidence for chemically mediated individual recognition. Anim. Behav. 27: 194–201.

    Google Scholar 

  • Crouau, Y., 1982. Primary stages in the sensory mechanism of the setulate sensilla, external mechanoreceptors of a Cavernicolous Mysidacea. Biol. Cell 44: 45–56.

    Google Scholar 

  • Cuadras, J., 1982. Microtrichs of amphipod crustacea. Morphology and distribution. Mar. Behav. Physiol. 8: 333–343.

    Google Scholar 

  • Dahl, E., H. Emaneulsson & C. von Mecklenburg, 1970. Pheromone reception in the males of the amphipod Gammarus duebeni Lilljeborg. Oikos 21: 42–47.

    Google Scholar 

  • Denton, E. J. & J. Gray, 1985. Lateral-line-like antennae of certain of the Penaeidae (Crust., Decap., Natantia). Proc. R. Soc. Lond. B 226: 249–261.

    Google Scholar 

  • Derby, C. D., 1982. Structure and function of cuticular sensilla of the lobster Homarus americanus. J. Crustacean Biol. 2: 1–21.

    Google Scholar 

  • Dethier, V. G., 1963. The physiology of insect senses. Methuen, London.

    Google Scholar 

  • Dijkgraaf, S., 1967. Biological significance of the lateral line organs. In P. Cahn (ed.), Lateral line organs. Indiana University Press, Bloomington: 83–95.

    Google Scholar 

  • Dill, L. M., 1987. Animal decision making and its ecological consequences: the future of aquatic ecology and behaviour. Can. J. Zool. 65: 803–811.

    Google Scholar 

  • Eckert, R. & D. Randall, 1983. Animal Physiology: Mechanisms and adaptations. W. H. Freeman and Company, New York.

    Google Scholar 

  • Evoy, W. H. & J. Ayers, 1982. Locomotion and Control of Limb movements. In D. N. Bliss, D. C. Sandman & H. C. Atwood (eds), Biology of Crustacea. Academic Press, New York 4. 62–106.

    Google Scholar 

  • Feltmate, B. W., R. L. Baker & P. J. Pointing, 1986. Distribution of the stonefly nymph Paragnetina media (Plecoptera: Perlidae): Influence of prey, predators, current speed, and substrate composition. Can. J. Fish. aquat. Sci. 43: 1582–1587.

    Google Scholar 

  • Feltmate, B. W. & D. D. Williams, 1989. A test of crypsis and predator avoidance in the stonefly Paragnetina media (Plecoptera: Perlidae). Anim. Behav. 37: 992–999.

    Google Scholar 

  • Ferrero, E. A., M. S. Laverack, M. Morin & M. Spoto, 1984. Morpho-physiological and behavioural bases of the chemoreception evidentiated on Squilla mantis (Crustacea, Stomatopoda) Abdominal Tergites. Nova Thalassia 6: 749–750.

    Google Scholar 

  • Gleeson, R. A., 1980. Pheromone communication in the reproductive behaviour of the blue crab, Callinectes sapidus. Mar. Behav. Physiol. 7: 119–134.

    Google Scholar 

  • Halcrow, K. & E. L. Bousfield, 1987. Scanning electron microscopy of surface microstructures of some gammaridean amphipod crustaceans. J. Crustacean Biol. 7: 274–287.

    Google Scholar 

  • Hargreaves, B. R., 1981. Energetics of crustacean swimming. In C. F. Herreid & C. R. Fourtner (eds), Locomotion and energetics in arthropods. Plenum Press, New York: 453–490.

    Google Scholar 

  • Hawkins, A. D. & K. Horner, 1981. The acoustic lateralis system of aquatic vertebrates. In M. S. Laverack & D. J. Cosens (eds), Sense Organs. Blackie, Glasgow, London: 220–254.

    Google Scholar 

  • Kapoor, N. N., 1985. External morphology and distribution of the antennal sensilla of the stonefly, Paragnetina media (Walker) (Plecoptera: Perlidae). Int. J. Insect Morphol. Embryol. 14: 273–280.

    Google Scholar 

  • Kapoor, N. N. & K. Zachariah, 1983. Ultrastructure of the sensilla of the stonefly nymph, Thaumatoperla alpina Burns and Neboiss (Plecoptera: Eustheniidae). Int. J. Insect Morphol. Embryol. 12: 157–168.

    Google Scholar 

  • Krebs, C. J., 1985. Ecology: The experimental analysis of distribution and abundance, 3rd ed. Harper and Row Publishers, New York.

    Google Scholar 

  • Laverack, M. S., 1976. External Proprioceptors. In P. J. Mill (ed.), Structure and Function of proprioceptors in the invertebrates. Chapman and Hall, London: 1–63.

    Google Scholar 

  • Laverack, M. S., 1981. The adaptive radiation of sense organs. In M. S. Laverack & D. J. Cosens (eds), Sense Organs. Blackie, Glasgow London: 7–30.

    Google Scholar 

  • Laverack, M. S. & Y. Barrientos, 1985. Sensory and other superficial structures in living marine crustacea. Trans. r. Soc. Edinb. 76: 123–136.

    Google Scholar 

  • Marchant, R. & H. B. N. Hynes, 1981. Field estimates of feeding rate for Gammarus pseudolimnaeus (Crustacea: Amphipoda) in the Credit River, Ontario. Freshwat. Biol. 11: 27–36.

    Google Scholar 

  • Mauchline, J., Y. Aizawa, T. Ishimaru, S. Nishida & R. Marumo, 1977. Integumental sensilla of pelagic decapod crustaceans. Mar. Biol. (Berlin) 43: 145–156.

    Google Scholar 

  • McIver, S. B., 1975. Structure of cuticular mechanoreceptors of Arthropods. Ann. Rev. Ent. 20: 381–397.

    Google Scholar 

  • Mellon, DeF., 1963. Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J. exp. Biol. 40: 137–148.

    Google Scholar 

  • Miller, J., 1975. Structure and function of trilobite terrace lines. Fossils and Strata 4: 155–178.

    Google Scholar 

  • Oakley, J. K. & D. L. Macmillan, 1980. The morphology and physiology of CAP organs in Jasus novaehollandiae (Crustacea, Decapoda, Reptantia, Macrura). Mar. Behav. Physiol. 7: 233–247.

    Google Scholar 

  • Offutt, C. G., 1970. Acoustic stimulus perception by the American lobster Homarus. Experientia 26: 1276–1278.

    Google Scholar 

  • Oshel, P. E., V. J. Steele & D. H. Steele, 1988. Comparative SEM Morphology of Amphipod Microtrich Sensilla. Crustaceana, Suppl. 13: 100–106.

    Google Scholar 

  • Platvoet, D., 1985. Side-line organ in gammarids (Crustacea, Amphipoda). Beaufortia 35: 129–133.

    Google Scholar 

  • Read, A. T. & D. D. Williams, 1991. The distribution, external morphology, and presumptive function of the surface microstructures of Gammarus pseudolimnaeus (Crustacea: Amphipoda), with emphasis on the calceolus. Can. J. Zool. 69: 853–865.

    Google Scholar 

  • Sakhuja, M., D. D. Williams & N. E. Williams, 1983. The role of setae in the behaviour of larval Phryganea cinerea Walker (Trichoptera: Phryganeidae). Can. J. Zool. 61: 725–731.

    Google Scholar 

  • Sandeman, D. C., 1976. Spatial equilibrium in the arthropods. In P. J. Mill (ed.), Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London: 485–527.

    Google Scholar 

  • Scheirer, C. J., W. S. Ray & H. Hare, 1976. The analysis of ranked data derived from completely randomized factorial designs. Biometrics 32: 429–434.

    Google Scholar 

  • Schneirla, T. C., 1929. Learning and orientation in ants. Comp. Psychol. Monogr. 6 No. 4.

  • Schwartzkoff, J., 1964. Mechanoreceptors. In: M. Rockstein (ed.), The physiology of Insecta, Vol 1. Academic Press, New York: 509–561.

    Google Scholar 

  • Schwedhelm, E., 1984. Ein neues sinnesorgan bei Gammarus (A new sense organ on Gammarus). Naturwissenschaften 71: 51.

    Google Scholar 

  • Shelton, R. G. J. & M. S. Laverack, 1970. Receptor hair structure and function in the lobster Homarus gammarus (L.). J. Exp. Mar. Biol. Ecol. 4: 201–210.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry: The principles and practice of statistics in Biological research, 2nd edn. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Statzner, B., 1987. Characteristics of lotic ecosystems and consequences for future research directions. In E-D. Schultze & H. Zwölfer (eds), Ecological Studies, vol 61. Springer-Verlag, Berlin Heideberg: 365–390.

    Google Scholar 

  • Steele, V. J. & P. E. Oshel, 1987. The ultrastructure of an integumental microtrich sensillum in Gammarus setosus (Amphipoda). J. Crustacean Biol. 7: 45–59.

    Google Scholar 

  • SYSTAT, Inc., 1988. SYSTAT, Version 3.2.

  • Tautz, J., 1979. Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66: 452–461.

    Google Scholar 

  • Tautz, J., 1987. Water vibration elicits active antennal movements in the crayfish, Orconectes limosus. Anim. Behav. 35: 748–754.

    Google Scholar 

  • Tautz, J., W. M. Masters, B. Aicher & H. Markl, 1981. A new type of water vibration receptor on the crayfish antenna l. Sensory physiology. J. Comp. Physiol. 144: 533–541.

    Google Scholar 

  • Vedel, J. P. & F. Clarac, 1976. Hydrodynamic sensitivity by cuticular organs in the rock lobster Palinurus vulgaris. Morphological and physiological aspects. Mar. Behav. Physiol. 3: 235–251.

    Google Scholar 

  • Warner, G. F., 1977. The Biology of Crabs. Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • Waters, T. F., 1984. Annual production by Gammarus pseudolimnaeus among substrate types in Valley creek, Minnesota. Am. Midl. Nat. 112: 95–102.

    Google Scholar 

  • Wiese, K., 1976. Mechanoreceptors for near-field water displacements in crayfish. J. Neurophysiol. 39: 816–833.

    Google Scholar 

  • Williams, D. D. & G. P. Levens, 1988. Evidence that hunger and limb loss can contribute to stream invertebrate drift. J. N. Am. Benth. Soc. 7: 180–187.

    Google Scholar 

  • Williams, D. D. & K. A. Moore, 1982. The effect of environmental factors on the activity of Gammarus pseudolimnaeus (Amphipoda). Hydrobiologia 96: 137–147.

    Google Scholar 

  • Williams, D. D. & K. A. Moore, 1985. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: a laboratory analysis. Oikos 44: 280–286.

    Google Scholar 

  • Williams, D. D. & K. A. Moore, 1986. Microhabitat selection by a stream-dwelling amphipod: a multivariate analysis approach. Freshwat. Biol. 16: 115–122.

    Google Scholar 

  • Williams, D. D. & K. A. Moore, 1989. Environmental complexity and the drifting behaviour of a running water amphipod. Can. J. Fish. aquat. Sci. 46: 1520–1530.

    Google Scholar 

  • Young, J. Z., 1981. The life of vertebrates, 3rd edn. Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olyslager, N.J., Williams, D.D. Function of the type 11 microtrich sensilla on the lotic amphipod, Gammarus pseudolimnaeus Bousfield. Hydrobiologia 259, 17–31 (1993). https://doi.org/10.1007/BF00005961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00005961

Key words

Navigation