Skip to main content
Log in

Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

Both physical and physiological modifications to the oxygen transport system promote high metabolic performance of tuna. The large surface area of the gills and thin blood-water barrier means that O2 utilization is high (30–50%) even when ram ventilation approaches 101 min−1kg−1. The heart is extremely large and generates peak blood pressures in the range of 70–100 mmHg at frequencies of 1–5 Hz. The blood O2 capacity approaches 16 ml dl−1 and a large Bohr coefficient (−0.83 to −1.17) ensures adequate loading and unloading of O2 from the well buffered blood (20.9 slykes). Tuna muscles have aerobic oxidation rates that are 3–5 times higher than in other teleosts and extremely high glycolytic capacity (150 μmol g−1 lactate generated) due to enhanced concentration of glycolytic enzymes. Gill resistance in tuna is high and may be more than 50% of total peripheral resistance so that dorsal aortic pressure is similar to that in other active fishes such as salmon or trout. An O2 delivery/demand model predicts the maximum sustained swimming speed of small yellowfin and skipjack tuna is 5.6 BL s−1 and 3.5 BL sec−1, respectively. The surplus O2 delivery capacity at lower swimming speeds allows tuna to repay large oxygen debts while swimming at 2–2.5 BL s−1. Maximum oxygen consumption (7–9 × above the standard metabolic rate) at maximum exercise is provided by approximately 2 × increases in each of heart rate, stroke volume, and arterial-venous O2 content difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References cited

  • Arthur, P.G., T.G. West, R.W. Brill, P.M. Schulte & P.W. Hochachka. 1992. Recovery metabolism of tuna white muscle: rapid and parallel changes of lactate and phosphocreatine after exercise. Can. J. Zool. 70: 1230–1239.

    Google Scholar 

  • Basile, C., G. Goldspink, M. Modigh & B. Tota. 1976. Morphological and biochemical characterization of the inner and outer ventricular myocardial layers of adult tuna fishThunnus thynnus L. Comp. Biochem. Physiol. 54B: 279–283.

    Google Scholar 

  • Block,B.A. 1991. Endothermy in fish: thermogenesis, ecology, and evolution. pp. 269–311.In: P.W. Hochachka & T. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Volume 1, Elsevier Science, New York.

    Google Scholar 

  • Boggs, C.H. & J.F. Kitchell. 1991. Tuna metabolic rates estimated from energy losses during starvation. Physiol. Zool. 64: 502–524.

    Google Scholar 

  • Boutilier, R.G., P. Aughton & G. Shelton. 1984. O2 and CO2 transport in relation to ventilation in the Atlantic mackerel,Scomber scombrus. Can. J. Zool. 62: 546–554.

    Google Scholar 

  • Brett, J.R. 1964. The respiratory metabolism and swimming performance of young sockey salmon. J. Fish. Res. Board Can. 21: 1126–1183.

    Google Scholar 

  • Brett, J.R. 1972. The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir. Physiol. 14: 151–170.

    PubMed  Google Scholar 

  • Brill, R.W. 1979. The effect of body size on the standard metabolic rate of skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 77: 494–498.

    Google Scholar 

  • Brill, R.W 1987. On the standard metabolic rate of tropical tunas, including the effect of body size and acute temperature change. U.S. Fish. Bull. 85: 25–35.

    Google Scholar 

  • Brill, R.W. & P.G. Bushnell. 1991. Effects of open and closed system temperature changes on blood oxygen dissociation curves of skipjack tuna,Katsuwonus pelamis, and yellowfin tuna,Thunnus albacares. Can. J. Zool. 69: 1814–1821.

    Google Scholar 

  • Brill, R.W. & A. Dizon. 1979. Red and white muscle fiber activity in swimming skipjack tuna,Katsuwonus pelamis. J. Fish Biol. 15: 679–685.

    Google Scholar 

  • Brill, R.W., P.G. Bushnell, D.R. Jones & M. Shimizu. 1992. Effects of acute temperature change, in vivo and in vitro, on the acid base status of blood from yellowfin tuna (Thunnus albacares). Can. J. Zool. 70: 654–660.

    Google Scholar 

  • Bushnell, P.G. & R.W. Brill. 1991. Responses of swimming skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares) tunas to acute hypoxia, and a model of their cardiorespiratory function. Physiol. Zool. 64: 887–911.

    Google Scholar 

  • Bushnell, P.G. & R.W. Brill. 1992. Oxygen transport and cardiovascular responses in skipjack tuna (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) exposed to acute hypoxia. J. Comp. Physiol. 162B: 131–143.

    Google Scholar 

  • Bushnell, P.G., R.W. Brill & R.E. Bourke. 1990. Cardiorespiratory responses of skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus obesus) to acute reductions in ambient oxygen. Can. J. Zool. 68: 1857–1865.

    Google Scholar 

  • Bushnell,P.G., D.R. Jones & A.P. Farrell. 1992. The arterial system. pp. 89–120.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New York

  • Bushnell, P.G., J.F. Steffensen & K. Johansen. 1984. Oxygen consumption and swimming performance in hypoxia-acclimated rainbow troutSalmo gairdneri. J. Exp. Biol. 113: 225–235.

    Google Scholar 

  • Cameron, J.N. 1989. Acid-base homeostasis: past and present perspectives. Physiol. Zool. 62: 845–865

    Google Scholar 

  • Campbell, K.B., E.A. Rhode, R.H. Cox, W.C. Hunter & A. Noordergraaf 1981. Functional consequences of expanded aortic bulb: a model study. Amer. J. Physiol. 240: R200–R210.

    Google Scholar 

  • Carey, F.G. & Q.H. Gibson. 1983. Heat and oxygen exchange in the rete mirabile of the bluefin tuna,Thunnus thynnus. Comp. Biochem. Physiol. 74A: 333–342.

    Google Scholar 

  • Carey, F.G. & R.J. Olson. 1982. Sonic tracking experiments with tunas. ICCAT Collective Volume of Scientific Papers 2: 446–458.

    Google Scholar 

  • Carey, F.G. & J.M. Teal. 1969. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213.

    PubMed  Google Scholar 

  • Cech, J.J. Jr., R.M. Laurs & J.B. Graham. 1984. Temperature-induced changes in blood gas equilibria in the albacore,Thunnus alalunga, a warm-bodied tuna. J. Exp. Biol. 109: 21–34.

    Google Scholar 

  • Daxboeck, C., P.S. Davie, S.F. Perry & D.J. Randall. 1982. Oxygen uptake in a spontaneously ventilating, blood perfused trout preparation. J. Exp. Biol. 101: 33–45.

    Google Scholar 

  • Dewar, H. & J.B. Graham. 1994. Studies of tropical tuna swimming performance: I. Energetics. J. Exp. Biol. (in press)

  • Dizon, A.E., R.W. Brill & H.S.H. Yuen. 1979. Correlations between environment, physiology and activity and the effects on thermoregulation in skipjack tuna. pp. 233–359.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Driedzic, W.R. 1983. The fish heart as a model system for the study of myoglobin. Comp. Biochem. Physiol. 76A: 1078–1083.

    Google Scholar 

  • Farrell, A.P. & D.R. Jones. 1992. The heart. pp. 1–73.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed.) Fish Physiology, Volume 12A, Academic Press, New York.

    Google Scholar 

  • Farrell, A.P, P.S. Davie, C.E. Franklin, J.A. Johansen & R.W. Brill. 1992. Cardiac physiology in tunas: I. In vitro perfused heart preparations from yellowfin and skipjack tunas. Can. J. Zool. 70: 1200–1210.

    Google Scholar 

  • Farrell, A.P, A.M. Hammons, M.S. Graham & G.F. Tibbits. 1988. Cardiac growth in rainbow trout,Salmo gairdneri. Can. J. Zool. 66: 2368–2373.

    Google Scholar 

  • Giovanne, A., G. Greco & B. Tota. 1980. Myoglobin in the heart ventricle of tuna and other fishes. Experimentia 36: 6–7.

    Google Scholar 

  • Gooding, R.M., W.H. Neill & A.E. Dizon. 1981. Respiration rates and low oxygen tolerance limits in skipjack tuna,Katsuwonus pelamis. U.S. Fish. Bull. 79: 31–48.

    Google Scholar 

  • Graham, J.B. & D.R. Diener. 1978. Comparative morphology of the central heat exchangers in the skipjackKatsuwonus andEuthynnus. pp. 113–134.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Graham, J.B. & R.M. Laurs. 1982. Metabolic rate of the albacore tunaThunnus alalunga. Mar. Biol. 72: 1–6.

    Google Scholar 

  • Graham, J.B., W.R. Lowell, N.C. Lai & R.M. Laurs. 1989. O2 tension, swimming-velocity, and thermal effects on the metabolic rate of the Pacific albacoreThunnus alalunga. Exp. Biol. 48: 89–94.

    PubMed  Google Scholar 

  • Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 303–319.

    Google Scholar 

  • Guyton, A.C., A.E. Taylor & H.J. Granger. 1975. Circulatory physiology II: dynamics and control of the body fluids. Saunders, Philadelphia. 397 pp.

    Google Scholar 

  • Hargens, A.R., R.W. Millard & K. Johansen. 1974. High capillary permeability in fishes. Comp. Biochem. Physiol. 48A: 675–680.

    Google Scholar 

  • Heisler, N.1984. Acid-base regulation in fishes. pp. 315–392.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10A, Academic Press, New York.

    Google Scholar 

  • Hochachka, P.W., W.C. Hulbert & M. Guppy. 1978. THe tuna power plant and furnace. pp. 153–174.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Holland, K.N., R.W. Brill & R.K.C. Chang. 1990. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. U.S. Fish. Bull. 88: 493–507.

    Google Scholar 

  • Hughes, G.M. 1984. General anatomy of the gills. pp. 1–72.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 10, Academic Press, New York.

    Google Scholar 

  • Hughes, G.M. & M. Morgan. 1973. The structure of fish gills in relation to their respiratory function. Biol. Rev. 48: 419–475.

    Google Scholar 

  • Hughes, G.M. & G. Shelton. 1962. Respiratory mechanisms and their nervous control in fish. Adv. Comp. Physiol. Biochem. 1: 275–364.

    PubMed  Google Scholar 

  • Hulbert, H.C., M. Guppy, B. Murphy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 289–301.

    PubMed  Google Scholar 

  • Johansen, K. 1965. Cardiovascular dynamics in fishes, amphibians, and reptiles. Ann. N.Y. Acad. Sci. 127: 414–442.

    PubMed  Google Scholar 

  • Jones, D.R. 1991. Cardiac energetics and the design of vertebrate arterial systems. pp. 159–168.In: R.W. Blake (ed.) Efficiency and Economy in Animal Physiology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones, D.R., R.W. Brill & P.G. Bushnell. 1993. Ventricular and arterial dynamics of anesthetized and swimming tuna. J. Exp. Biol. 182: 97–105.

    Google Scholar 

  • Jones, D.R., R.W. Brill & D.C. Mense. 1986. The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in free-swimming tuna,Euthynnus affinis. J. Exp. Biol. 120: 201–213.

    Google Scholar 

  • Jones, D.R., R.W. Brill, P.J. Butler, P.G. Bushnell & M.R.A. Heieis. 1990. Measurement of ventilation volume in swimming tunas. J. Exp. Biol. 149: 491–498.

    Google Scholar 

  • Kanwisher, J., K. Lawson & G. Sundnes. 1974. Acoustic telemetry from fish. U.S. Fish. Bull. 72: 251–255.

    Google Scholar 

  • Kiceniuk, J.W. & D.R. Jones. 1977. The oxygen transport system in troutSalmo gairdneri during sustained exercise. J. Exp. Biol. 69: 247–260.

    Google Scholar 

  • Kobyayashi, H., B. Pelster & P. Scheid. 1989. Water and lactate movement in the swimbladder of the eel,Anguilla anguilla. Respir. Physiol. 78: 45–57.

    PubMed  Google Scholar 

  • Lai, N.C., J.B. Graham, W.R. Lowell & R.M. Laurs. 1987. Pericardial and vascular pressures and blood flow in the albacore tuna,Thunnus alalunga. Exp. Biol. 46: 187–192.

    PubMed  Google Scholar 

  • Magnuson, J.J. 1978. Locomotion by scombrid fishes: hydrodynamics, morphology, and behavior. pp. 239–313.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Volume 7, Academic Press, New York.

    Google Scholar 

  • Moyes, C.D., O.A. Mathieu-Costello & R.W. Brill. 1992. Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can. J. Zool. 70: 1246–1250.

    Google Scholar 

  • Muir, B.S. & G.M. Hughes. 1969. Gill dimensions for three species of tunny. J. Exp. Biol. 51: 271–285.

    Google Scholar 

  • Nordlie, F.G. & C.W. Leffler. 1975. Ionic regulation and the energetics of osmoregulation inMugil cephalus Lin. Comp. Biochem. Physiol. 51A: 125–131.

    Google Scholar 

  • Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985a. Effects of temperature change on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Comp. Biochem. Physiol. 81A: 49–53.

    Google Scholar 

  • Perry, S.F., C. Daxboeck, B. Emmett, P.W. Hochachka & R.W. Brill. 1985b. Effects of exhausting exercise on acid-base regulation in skipjack tuna (Katsuwonus pelamis) blood. Physiol. Zool. 58: 421–429.

    Google Scholar 

  • Rahn, H.1967. Gas transport from the environment to the cell. pp. 3–23.In: A.V.S. de Reuck & R. Porter (ed.) Development of the Lung, Ciba Found. Symp., London.

  • Roberts, J.L., 1978. Ram gill ventilation in fish. pp. 83–88.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Sanchez-Quintana, D. & J. Hurle, 1987. Ventricular myocardial architecture in marine fishes. Anat. Rec. 217: 263–273.

    PubMed  Google Scholar 

  • Santer, R.M., M. Greer Walker, L. Emerson & P.R. Whitammes. 1983. On the morphology of the heart ventricle in marine teleost fish (Teleosti). Comp. Biochem. Physiol. 76A: 453–457.

    Google Scholar 

  • Schulte, P.M., C.D. Moyes & P.W. Hochachka. 1992. Integrating metabolic pathways in post-exercise recovery of white muscle. J. Exp. Biol. 166: 181–196.

    PubMed  Google Scholar 

  • Serafini-Fracassini, A., J.M. Field, M. Spina, S. Garbisa & R.J. Stuart, 1978. The morphological organization and ultrastructure of elastin in the arterial wall of trout (Salmo gairdneri and salmon (Salmo salar J. Ultrastruc. Res. 65: 1–12.

    Google Scholar 

  • Shelton, G., D.R. Jones & W.K. Milsom.1986. Control of breathing in ectothermic vertebrates. pp. 857–909.In: N.S. Cherniack & J.G. Widdicombe (ed.) Handbook of Physiology, Section 3: ‘The Respiratory System’ Vol. 2, American Physiological Society, American Physiological Society.

    Google Scholar 

  • Somero, G.N. 1986. Protons, osmolytes, and fitness of internal milieu for protein function. Amer. J. Physiol. 251: R197–R213.

    PubMed  Google Scholar 

  • Steffensen, J.F. 1985. The transition between branchial pumping and ram ventilation in fishes: energetic consequences and dependence on water oxygen tension. J. Exp. Biol. 114: 141–150.

    Google Scholar 

  • Stevens, E.D. 1982. The effect of temperature on facilitated oxygen diffusion and its relation to warm tuna. Can. J. Zool. 60: 1148–1152.

    Google Scholar 

  • Stevens, E.D., How Man Lam & J. Kendall. 1974. Vascular anatomy of the counter-current heat exchanger of skipjack tuna. J. Exp. Biol. 61: 145–153.

    PubMed  Google Scholar 

  • Sund, P.N., M. Blackburn & F. Williams. 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Ann. Rev. 19: 443–512.

    Google Scholar 

  • Tetens, V. & N.J. Christensen. 1987. Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J. Comp. Physiol. 157B: 667–675.

    Google Scholar 

  • Tota, B. 1978. Functional cardiac morphology and biochemistry in Atlantic bluefin tuna. pp. 89–112.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.

    Google Scholar 

  • Tota, B. 1983. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. 76A: 423–437.

    Google Scholar 

  • Walters, V. & H.L. Firestine. 1964. Measurements of swimming speeds of yellowfin tuna and wahoo. Nature 202: 208–209.

    Google Scholar 

  • Weber, J-M., R.W. Brill & P.W. Hochachka. 1986. Mammalian metabolic flux rates in a teleost: lactate and glucose turnover in tuna. Amer. J. Physiol. 250: R452–R458.

    PubMed  Google Scholar 

  • White, F.C., R. Kelly, S. Kemper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow heamodynamics and metabolism of the albacore tunaThunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169

    PubMed  Google Scholar 

  • Wood, C.M. & S.F. Perry. 1985. Respiratory, circulatory, and metabolic adjustments to exercise in fish. pp. 2–22.In: R. Gilles (ed.) Circulation, Respiration, and Metabolism — Current Comparative Approaches, Springer-Verlag, Berlin.

    Google Scholar 

  • Yamamoto, K.I. & Y. Itazawa. 1989. Erythrocyte supply from the spleen of exercised carp. Comp. Biochem. Physiol. 92A: 139–144.

    Google Scholar 

  • Zubay, G.L. 1983. Biochemistry. Addison-Wesley, Reading, 1268 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper from International Union of Biological Societies symposium ‘The biology of tunas and billfishes: an examination of life on the knife edge’, organized by Richard W. Brill and Kim N. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushnell, P.G., Jones, D.R. Cardiovascular and respiratory physiology of tuna: adaptations for support of exceptionally high metabolic rates. Environ Biol Fish 40, 303–318 (1994). https://doi.org/10.1007/BF00002519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00002519

Key words

Navigation