Skip to main content
Log in

Intestine length in the fishes of a tropical stream: 1. Ontogenetic allometry

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

We examined the ontogenetic allometry of intestine length in relation to body length and body mass in 21 species of fish from forest streams in Panama. The relationships between log10 intestine length and log10 body length and mass were well described by linear regressions, although some species showed slight curvilinearity. Slopes and intercepts of the linear regressions varied considerably among species. Intestine length was positively allometric in most species, with slopes of the intestine length:body length relationship ranging from 1.09 to 2.11. Relative intestine lengths (intestine length/body length) varied by two orders of magnitude (0.39–38.44) in the data set as a whole, but the variation was about one order of magnitude when species were compared at a common body size. Species in which body mass increased more rapidly with body length had more rapid increases in intestine length with body length. Among omnivorous and carnivorous species compared at the same body length, heavier species had longer intestines. Interspecific comparisons of relative intestine length may produce misleading conclusions unless comparisons are made at a common size and account for differences in relative mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Al-Hussaini, A.H. 1947. The feeding habits and the morphology of the alimentary tract of some teleosts living in the neighbourhood of the Marine Biological Station, Ghardaqa, Red Sea. Publications of the Marine Biological Station, Ghardaqa (Red Sea) 5: 1–61.

    Google Scholar 

  • Al-Hussaini, A.H. 1949. On the functional morphology of the alimentary tract of some fish in relation to differences in their feeding habits: anatomy and histology. Quart. J. Micr. Sci. 90: 109–139.

    Google Scholar 

  • Angelescu, V. & F.S. Gneri. 1949. Adaptaciones del aparato digestivo al regimen alimenticio en algunos peces del Rio Uruguay y del Rio de La Plata. Revista del Instituto Nacional de Investigacion de las Ciencias Naturales anexo al Museo Argentino de Ciencias Naturales (Bernardo Rivadavia) 1: 161–272.

    Google Scholar 

  • Angermeier, P.L. & J.R. Karr. 1983. Fish communities along environmental gradients in a system of tropical streams. Env. Biol. Fish 9: 117–135.

    Google Scholar 

  • Ashton, P.J., F.M. Chutter, K.L. Cochrane, F.C. de Moor, J.R. Hely-Hutchinson, A.C. Jarvis, R.D. Robarts, W.E. Scott, J.A. Thornton, A.J. Twinch & T. Zohary. 1985. The limnology of Hartbeespoort Dam. Foundation for Research Development, Pretoria. 250 pp.

    Google Scholar 

  • Braber, L. & S.J. de Groot. 1973. On the morphology of the alimentary tract of flatfishes (Pleuronectiformes). J. Fish Biol. 5: 147–153.

    Google Scholar 

  • Brett, J.R. & TD. Groves. 1979. Physiological energetics. pp. 279–352. In: W.S. Hoar, D.J. Randall & J.R. Brett (ed.) Fish Physiology: Bioenergetics and Growth, Vol 8, Academic Press, New York.

  • Dade, W.B., P.A. Jumars & D.L. Penry. 1990. Supply-side optimization: maximizing absorptive rates. pp. 531–556. In: R.N. Hughes (ed.) Behavioural Mechanisms of Food Selection, Springer-Verlag, Berlin.

    Google Scholar 

  • De Silva, S.S., P. Maitipe & R.T. Cumaranatunge. 1984. Aspects of the biology of the euryhaline Asian cichlidEtroplus suratensis. Env. Biol. Fish. 10: 77–87.

    Google Scholar 

  • Emery, A.R. 1973. Comparative ecology and functional osteology of fourteen species of the damselfish (Pisces: Pomacentridae) at Alligator Reef, Florida Keys. Bull. Mar. Sci. 23: 649–770.

    Google Scholar 

  • Fleagle, J.G. 1985. Size and adaptation in primates. pp. 1–19. In: W.L. Jungers (ed.) Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Fryer, G. & T.D. Iles. 1972. The cichlid fishes of the Great Lakes of Africa: their biology and evolution. T.F.H. Publications, Neptune City. 641 pp.

    Google Scholar 

  • Goolish, E.M. & I.R. Adelman. 1988. Tissue-specific allometry of an aerobic respiratory enzyme in a large and a small species of cyprinid (Teleostei). Can. J. Zool. 66: 2199–2208.

    Google Scholar 

  • Hiatt, R.W. 1944. Food-chains and the food cycle in Hawaiian fish ponds-Part I. The food and feeding habits of mullet (Mugil cephalus), milkfish (Chanos chanos), and the ten-pounder (Elops machnata). Trans. Amer. Fish. Soc. 74: 250–261.

    Google Scholar 

  • Hofer, R. & A.N. Uddin. 1985 Digestive processes during the development of the roach,Rutilis rutilus (L). J. Fish Biol. 26: 683–689.

    Google Scholar 

  • Horn, M.H. & K.S. Messer. 1992 Fish guts as chemical reactors: a model of the alimentary canals of marine herbivorous fishes. Mar. Biol. 113: 527–535.

    Article  Google Scholar 

  • Kapoor, B.G., H. Smit & A.I. Verighina. 1975. The alimentary canal and digestion in teleosts. Adv. Mar. Biol. 13: 109–239.

    Google Scholar 

  • Kline, K.F. 1978. Aspects of digestion in stomachless fishes. Ph.D. Dissertation, University of California, Davis. 94 pp.

  • Klust, G. 1939/1940. Über Entwicklung, Bau and Funktion des Darmes beim Karpfen (Cyprinus carpio L.). Internat. Rev. Gesamt. Hydrobiol. Hydrogr. 39: 498–536; 40: 88–173.

    Google Scholar 

  • Kramer, D.L. 1978. Reproductive seasonality in the fishes of a tropical stream. Ecology 59: 976–985.

    Google Scholar 

  • Kramer, D.L. & M.J. Bryant. 1995. Intestine length in the fishes of a tropical stream: 2. Relationships to diet — the long and short of a convoluted issue. Env. Biol. Fish. 42: 129–141.

    Google Scholar 

  • LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20: 97–117.

    Article  Google Scholar 

  • Lassuy, D.R. 1984. Diet, intestinal morphology, and nitrogen assimilation efficiency in the damselfish,Stegastes lividus, in Guam. Env. Biol. Fish. 10: 183–193.

    Article  Google Scholar 

  • Maitipe, P. & S.S. De Silva. 1985. Switches between zoophagy, phytophagy and detritivory ofSarotherodon mossambicus (Peters) populations in twelve man-made Sri Lankan lakes. J. Fish Biol. 26: 49–61.

    Google Scholar 

  • McArdle, B.H. 1988. The structural relationship: regression in biology. Can. J. Zool. 66: 2329–2339.

    Google Scholar 

  • Montgomery, W.L. 1977., Diet and gut morphology in fishes, with special reference to the monkeyface prickleback,Cebidichthys violaceids (Stichaeidae: Blennioidei). Copeia 1977: 178–182.

  • Moyle, P.B. & J.J. Cech, Jr. 1982. Fishes: an introduction to ichthyology. Prentice-Hall, Englewood Cliffs. 593 pp.

    Google Scholar 

  • Naiman, R.J. 1975. Food habits of the Amargosa pupfish in a thermal stream. Trans. Amer. Fish. Soc. 104: 536–538.

    Article  Google Scholar 

  • Odum, W.E. 1970. Utilization of the direct grazing and plant detritus food chain by the striped mullet,Mugil cephalus. pp. 222–240. In: J.H. Steele (ed.) Marine Food Chains, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Penry D.L. & P.A. Jumars. 1987. Modeling animals guts as chemical reactors. Amer. Nat. 129: 69–96.

    Article  Google Scholar 

  • Penry D.L. & P.A. Jumars. 1990. Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes. Oecologia 82: 1–11.

    Article  Google Scholar 

  • Peters, R.H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge. 329 pp.

    Google Scholar 

  • Power, M.E. 1984. Habitat quality and the distribution of algaegrazing catfish in a Panamanian stream. J. Anim. Ecol. 53: 357–374.

    Google Scholar 

  • Reinthal, P.E. 1989. The gross intestine morphology of a group of rock-dwelling cichlid fishes (Pisces, Teleostei) from Lake Malawi. Neth. J. Zool. 39: 208–225.

    Google Scholar 

  • Ribble, D.O. & M.H. Smith. 1983. Relative intestine length and feeding ecology of freshwater fishes. Growth 47: 292–300.

    Google Scholar 

  • Wieser, W. 1984. A distinction must be made between the ontogeny and phylogeny of metabolism in order to understand the mass exponent of energy metabolism. Respir. Physiol. 56: 1–9.

    Article  PubMed  Google Scholar 

  • Zaret, T.M. & A.S. Rand. 1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology 52: 336–342.

    Google Scholar 

  • Zihler, F 1982. Gross morphology and configuration of digestive tracts of Cichlidae (Teleostei, Perciformes): phylogenetic and functional significance. Neth. J. Zool. 32: 544–571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, D.L., Bryant, M.J. Intestine length in the fishes of a tropical stream: 1. Ontogenetic allometry. Environ Biol Fish 42, 115–127 (1995). https://doi.org/10.1007/BF00001990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00001990

Key words

Navigation