Skip to main content
Log in

Digital holography for 3D imaging and display in the IR range: challenges and opportunities

  • 3DR Review
  • Published:
3D Research

Abstract

In analog holography, the infrared (IR) range received quite some attention, since it could provide interesting information, not achievable otherwise. Since digital sensors in this band became recently available and affordable, also digital holography (DH) expanded its feasibility beyond the visible wavelengths. In fact, the IR range allows shorter recording distances, unparalleled larger field of view and less stringent requirements on system stability, together with some specific characteristics, like e.g. the possibility to test IR glasses or other materials transparent to IR radiation, which cannot be controlled in visible range. In this paper we review the activities which took place in this field and illustrate the results achieved, referring to the opportunities this technique offers, and the challenges it presents. We show efficient reconstructions of holograms of objects of various materials, recorded with different resolution digital thermal cameras, in various configurations, and moreover we demonstrate optical holographic display through a liquid crystal based Spatial Light Modulator which gives the chance to get direct 3D imaging and display of long IR range. Moreover we believe this opens the route toward holography in THz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, R. Meucci, (2003) Digital holography at 10.6 micron, Opt. Commun. 215:257–262

    Article  Google Scholar 

  2. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, M. Rioux, (1978) Pulsed ir holography on Takiwax films. Appl. Opt. 17:3619

    Article  Google Scholar 

  3. R. M. Beaulieu, R. A. Lessard (1997) Review of recording media for holography at 10.6 μm, Proc. SPIE. 30112:98–305

    Google Scholar 

  4. S. Calixto (1988) Infrared recording with gelatin films. Appl. Opt. 27:1977–1983

    Article  Google Scholar 

  5. J. S. Chivian, R. N. Claytor, D. D. Eden (1969) Infrared holography at 10.6 μm. Appl. Phys. Lett. 15:123–125

    Article  Google Scholar 

  6. G. Decker et al (1972) Holography and Holographic interferometry with pulsed high-power lasers. Appl. Phys. Lett. 20:490

    Article  Google Scholar 

  7. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, F. T. Arecchi (2008) Infrared digital reflective-holographic 3D shape measurements. Opt. Commun. 281:1445–1449

    Article  Google Scholar 

  8. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, G. Pierattini (2003) Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl. Opt. 42:1938–1946

    Article  Google Scholar 

  9. P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, G. Coppola (2004) Recovering image resolution in reconstructing digital off-axis holograms by Fresneltransform method. Applied Physics Letters. 85:2709–2711

    Article  Google Scholar 

  10. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, V. Striano (2005) Extended focused image in microscopy by digital holography. Opt. Express. 13:6738–6749

    Article  Google Scholar 

  11. P. Ferraro, M. Paturzo, P. Memmolo, A. Finizio (2009) Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms. Opt. Lett. 34:2787–2789

    Article  Google Scholar 

  12. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci (2001) Whole optical wavefields reconstruction by digital holography. Opt. Express. 9: 294–302

    Article  Google Scholar 

  13. R. W. Meier (1965) “Magnification and Third-Order Aberrations in Holography,” J. Opt. Soc. Am. 55:987–992

    Article  Google Scholar 

  14. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, P. Ferraro (2008) Super-resolution in digital holography by a two dimensional dynamic phase grating. Optics Express. 16:17107–17118

    Article  Google Scholar 

  15. M. Paturzo, P. Ferraro (2009) Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography. Opt. Lett. 24:3650–3652

    Article  Google Scholar 

  16. M. Paturzo, P. Ferraro (2009) “Creating an extended focus image of a tilted object in Fourier digital holography,” Opt. Express. 17:20546–20552

    Article  Google Scholar 

  17. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, P. Ferraro (2010) Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths. Opt. Lett. 35:2112–2114

    Article  Google Scholar 

  18. A. Pelagotti, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, P. Ferraro “Reliability of 3D imaging by digital holography at long IR wavelength” IEEE/OSA Journal of Display Technology (in press).

  19. D. Prévost, G. Thibault, P. Galarneau, M. Denariez-Roberge, A. Tarrats-Saugnac, F. de Contencin (1989) Thermal gratings written in glycerol with CO2 laser radiation. Appl. Opt. 28:3751–3753

    Article  Google Scholar 

  20. L. Repetto, R. Chittofrati, E. Piano, C. Pontiggia (2005) Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers. Opt. Comm. 251:44–50

    Article  Google Scholar 

  21. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu, D. Bélanger (1997) Plastic recording media for holography at 10.6 μm. Appl. Opt. 16:1876–1879

    Article  Google Scholar 

  22. M. Rioux, M. Blanchard, M. Cormier, R. Beaulieu (1978) Use of the TEM10 laser mode for ir holography at 10.6 μm Appl. Opt. 17:3864

    Article  Google Scholar 

  23. G. I. Rukman, B. E. Lisyanskii, P. A. Morozov, S. P. Morozova, (1978) Holography in the IR region of the spectrum, based on scanning image converters. Meas. Techniques. 21:635–636

    Article  Google Scholar 

  24. T. Sakusabe, S. Kobayashi (1971) Infrared Holography with Liquid Crystals. Jpn. J. Appl. Phys. 10:758–761

    Article  Google Scholar 

  25. K. Shigeaki, K. Kyoko (1971) Infrared Holography with Wax and Gelatin Film. Appl. Phys. Lett. 19:482

    Article  Google Scholar 

  26. A. Stadelmaier, J. H. Massig (2000) Compensation of lens aberrations in digital holography. Opt. Lett. 25:1630–1632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pelagotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelagotti, A., Paturzo, M., Geltrude, A. et al. Digital holography for 3D imaging and display in the IR range: challenges and opportunities. 3D Res 1, 6 (2010). https://doi.org/10.1007/3DRes.04(2010)06

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/3DRes.04(2010)06

Keywords

Navigation